The emergent new science of synthetic biology is challenging entrenched distinctions between, amongst others, life and non-life, the natural and the artificial, the evolved and the designed, and even the material and the informational. Whenever such culturally sanctioned boundaries are breached, researchers are inevitably accused of playing God or treading in Frankenstein’s footsteps. Bioethicists, theologians and editors of scientific journals feel obliged to provide an authoritative answer to the ambiguous question of the ‘meaning’ of life, both as a scientific definition and as an explication with wider existential connotations. This article analyses the arguments mooted in the emerging societal debates on synthetic biology and the way its practitioners respond to criticism, mostly by assuming a defiant posture or professing humility. It explores the relationship between the ‘playing God’ theme and the Frankenstein motif and examines the doctrinal status of the ‘playing God’ argument. One particularly interesting finding is that liberal theologians generally deny the religious character of the ‘playing God’ argument—a response which fits in with the curious fact that this argument is used mainly by secular organizations. Synthetic biology, it is therefore maintained, does not offend so much the God of the Bible as a deified Nature. While syntheses of artificial life forms cause some vague uneasiness that life may lose its special meaning, most concerns turn out to be narrowly anthropocentric. As long as synthetic biology creates only new microbial life and does not directly affect human life, it will in all likelihood be considered acceptable.
Since 2008, we witness the emergence of the Do-It-Yourself Biology movement, a global movement spreading the use of biotechnology beyond traditional academic and industrial institutions and into the lay public. Practitioners include a broad mix of amateurs, enthusiasts, students, and trained scientists. At this moment, the movement counts nearly 50 local groups, mostly in America and Europe, but also increasingly in Asia. Do-It-Yourself Bio represents a direct translation of hacking culture and practicesfrom the realm of computers and software into the realm of genes and cells. Although the movement is still in its infancy, and it is even unclear whether it will ever reach maturity, the contours of a new paradigm of knowledge production are already becoming visible. We will subsequently sketch the economic, the epistemological and the ethical profile of Do-It-Yourself Bio, and discuss its implications and also its ambivalences.
Welfare of animals can be defined as the kind of feelings the environmental conditions bring about in the animals. These feelings depend on the needs of the animals and their degree of satisfaction. Needs of animals, and so their welfare, are partly genetically determined. Therefore, welfare can be changed by breeding. The aim of this study was to investigate how welfare of pigs under modern intensive farm conditions can be improved by genetic selection, with emphasis on the precise definition of the breeding goal and determination of the animal characteristics on which selection can be based in practice. The existing thermoregulation model was used to develop a conceptual framework that describes welfare of growing pigs and production sows with respect to each of their needs as a curvilinear function of the respective environmental conditions. The framework assumes that welfare in terms of feelings is reflected by the physiological and behavioural mechanisms the pig has to activate in order to cope with the various environmental conditions it encounters. Based on those physiological and behavioural responses to changing conditions, five welfare zones can be distinguished for each need. Breeding goals for welfare were defined in terms of the transition points between these welfare zones, such that future pigs would better cope with unfavourable or unfamiliar farming conditions, therewith quickening the domestication process, to some extent. However, as long as genetic parameters for these transition points are not available, more common welfare-related characteristics like temperament, stress resistance and robustness can be included in the breeding goal, as an alternative.For selection among potential breeding candidates, transition points between welfare zones can be determined in sib tests, thereby also collecting the data for estimating genetic parameters. As a cheaper alternative, breeding candidates could be tested under hard conditions and selected on their coping success. In addition, various behavioural tests and operant conditioning tests (to test a pig's motivation to change its actual environment) can be carried out. Under common conditions on the farm, problems associated with coping (like incidences of diseases, injuries, and stereotypies) and/or other relevant traits (e.g. saliva cortisol levels, longevity and even production traits) should be recorded routinely and used as selection index information. Selection for improved welfare should lead to more tolerant pigs that are better able to cope with possible unfavourable farm conditions by a more efficient use of the adaptation mechanisms they already possess. It should, however, not result in lowering husbandry standards. More research is needed to assess genetic correlations among various welfare aspects and with production traits to prevent undesired side effects in future populations of pigs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.