In the theory of operators on a Riesz space (vector lattice), an important result states that the Riesz homomorphisms (lattice homomorphisms) on C(X) are exactly the weighted composition operators. We extend this result to Riesz* homomorphisms on order dense subspaces of C(X). On those subspace we consider and compare various classes of operators that extend the notion of a Riesz homomorphism. Furthermore, using the weighted composition structure of Riesz* homomorphisms we obtain several results concerning bijective Riesz* homomorphisms. In particular, we characterize the automorphism group for order dense subspaces of C(X). Lastly, we develop a similar theory for Riesz* homomorphisms on subspace of C 0 (X), for a locally compact Hausdorff space X , and apply it to smooth manifolds and Sobolev spaces.
In this paper we completely describe the order isomorphisms between cones of atomic JBW-algebras. Moreover, we can write an atomic JBW-algebra as an algebraic direct summand of the so-called engaged and disengaged part. On the cone of the engaged part every order isomorphism is linear and the disengaged part consists only of copies of R. Furthermore, in the setting of general JB-algebras we prove the following. If either algebra does not contain an ideal of codimension one, then every order isomorphism between their cones is linear if and only if it extends to a homeomorphism, between the cones of the atomic part of their biduals, for a suitable weak topology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.