Many fish species adapt to hypoxia by reducing their metabolic rate and increasing hemoglobin-oxygen (Hb-O2) affinity. Pilot studies with young broods of cichlids showed that the young could survive severe hypoxia in contrast with the adults. It was therefore hypothesized that early exposure results in improved oxygen transport. This hypothesis was tested using split brood experiments. Broods of Astatoreochromis alluaudi, Haplochromis ishmaeli, and a tilapia hybrid ( Oreochromis) were raised either under normoxia (NR; 80–90% air saturation) or hypoxia (HR; 10% air saturation). The activity of the mitochondrial citrate synthase was not different between NR and HR tilapia, but was significantly decreased in HR A. alluaudi and H. ishmaeli, indicating lowered maximum aerobic capacities. On the other hand, hemoglobin and hematocrit levels were significantly higher in all HR fish of the three species, reflecting a physiological adaptation to safeguard oxygen transport capacity. In HR tilapia, intraerythrocytic GTP levels were decreased, suggesting an adaptive increase of blood-O2 affinity. Similar changes were not found in HR H. ishmaeli. In this species, however, all HR specimens exhibited a distinctly different iso-Hb pattern compared with their NR siblings, which correlated with a higher intrinsic Hb-O2 affinity in the former. All HR cichlids thus reveal left-shifted Hb-O2 equilibrium curves, mediated by either decreased allosteric interaction or, in H. ishmaeli, by the production of new hemoglobins. It is concluded that the adaptation to lifelong hypoxia is mainly due to improved oxygen transport.
During the upsurge of the introduced predatory Nile perch in Lake Victoria in the 1980s, the zooplanktivorous Haplochromis (Yssichromis) pyrrhocephalus nearly vanished. The species recovered coincident with the intense fishing of Nile perch in the 1990s, when water clarity and dissolved oxygen levels had decreased dramatically due to increased eutrophication. In response to the hypoxic conditions, total gill surface in resurgent H. pyrrhocephalus increased by 64%. Remarkably, head length, eye length, and head volume decreased in size, whereas cheek depth increased. Reductions in eye size and depth of the rostral part of the musculus sternohyoideus, and reallocation of space between the opercular and suspensorial compartments of the head may have permitted accommodation of larger gills in a smaller head. By contrast, the musculus levator posterior, located dorsal to the gills, increased in depth. This probably reflects an adaptive response to the larger and tougher prey types in the diet of resurgent H. pyrrhocephalus. These striking morphological changes over a time span of only two decades could be the combined result of phenotypic plasticity and genetic change and may have fostered recovery of this species.
A massive enlargement of the gill surface proved to be an important factor in the hypoxia survival of young cichlids. Because the heads of cichlids are densely packed with structures related to both feeding and breathing, we hypothesized that the extra space needed for gill enlargement requires such large structural reorganizations that outer head shape is affected. We used a three-dimensional model to describe changes in the outer head shape of cichlids. Broods of cichlids of different phylogenetic lineages, habitats, and trophic specialization were split and raised at either 10% or 80-90% air saturation. Despite the above-mentioned differences between the species that were used, all hypoxia raised groups showed similar volume enlargements. Volume increases were most prominent in the ventral suspensorial and ventral opercular subcompartments. A relation with the enlarged gills of hypoxia raised fish is likely because the gills are mainly located in these compartments. The differences in ventral width correspond to those found in other studies comprising a wide variety of genotypic and phenotypic variations. The present study shows that such variation in the ventral width is conceivable by phenotypic plasticity alone.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.