Gelatin has been widely used as an additive in pharmaceutical, cosmetic, and food industry. The similar physical appearance between bovine and porcine gelatin causes an issue for some communities like a Muslim due to awareness of halal food. A Muslim community consider porcine gelatin is non-halal material which must be avoided. So there is a demand to distinguish and labeling the origin source of the gelatin in any products. In turn, it lead to development of a method to identify the source of gelatin. In this study, performance of a modified Quartz Crystal Microbalance (QCM) sensor to identify halal gelatin has been investigated. A QCM sensor was modified by depositing polyaniline/nickel compound on the surface of gold electrode QCM carried out by Layer by Layer (LbL) deposition technique. Bovine and porcine gelatin were measured in demineralized water at pH 9. This modified QCM sensor shows good frequency response to distinguish bovine and porcine gelatin. The measurements gave a negative frequency shifts for bovine gelatin and a positive frequency shifts for porcine gelatin. The modified QCM sensor also worked well in the real sample. This indicates that a modified QCM sensor is very useful and effective technique to distinguish bovine gelatin (halal) from porcine gelatin (non-halal).
Production of biodiesel from crude nyamplung oil (Calophyllum inophyllum) have been done by transesterification using Al-MCM-41 catalyst. Al-MCM-41 catalyst was obtained from impregnation of MCM-41 by Al. Sodium aluminate was added to MCM-41 until pH 11.5. The mixture was heated until 110 °C for 5 days. The calcination was performed at 500 °C, and then cooled at room temperature. The Al-MCM-41 obtained was characterized using SAXRD. Morphology of the surface was analyzed using SEM. The metals content were measured using XPS. Performance of Al-MCM-41 to adsorp and desorp nitrogen was also monitored by GSA using BET model. Acidity of the Al-MCM-41 was analyzed by FTIR using absorption of pyridine. The catalytic activity was measured using gas chromatography-mass spectrometry (GC-MS). The chromatogram shows that conversion Nyamplung seed oil to biodiesel is 98.15%. The performance of biodiesel obtained was analyzed by use it to diesel engine. The biodiesel obtained was mixed with commercial diesel fuel in various volume ratios (i.e. 0, 10, 20, 30 and 100%) before used. Viscosity, flash point, boiling point, cloud point, and pour point of the mixtures were characterized. These measuring properties increase with the increase of biodiesel concentration. Optimum engine power was achieved by 10% biodiesel. The mixture of 10% biodiesel has similar characteristic to commercial diesel fuel at load until 1800 watt.
Biogasoline have been synthesized through catalytic hydrocracking reaction against FAMEs compounds (fatty acid methyl esters) obtained from the transesterification of Nyamplung seed oil. The performance of Al-MCM-41 and
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.