Perkembangan teknologi saat ini telah memberikan kemudahan bagi banyak orang dalam mendapatkan dan menyebarkan informasi di berbagai social media platform. Twitter merupakan salah satu media yang kerap digunakan untuk menyampaikan opini sebagai bentuk reaksi seseorang atas suatu hal. Opini yang terdapat di Twitter dapat digunakan perusahaan maskapai penerbangan sebagai parameter kunci untuk mengetahui tingkat kepuasan publik sekaligus bahan evaluasi bagi perusahaan. Berdasarkan hal tersebut, diperlukan sebuah metode yang dapat secara otomatis melakukan klasifikasi opini ke dalam kategori positif, negatif, atau netral melalui proses analisis sentimen. Proses analisis sentimen dilakukan dengan proses data preprocessing, pembobotan kata menggunakan metode TF-IDF, penerapan algoritma, dan pembahasan atas hasil klasifikasi. Klasifikasi opini dilakukan dengan machine learning approach memanfaatkan algoritma multi-class Support Vector Machine (SVM). Data yang digunakan dalam penelitian ini adalah opini dalam bahasa Inggris dari para pengguna Twitter terhadap maskapai penerbangan. Berdasarkan pengujian yang telah dilakukan, hasil klasifikasi terbaik diperoleh menggunakan SVM kernel RBF pada nilai parameter 𝐶(complexity) = 10 dan 𝛾(gamma) = 1, dengan nilai accuracy sebesar 84,37% dan 80,41% ketika menggunakan 10-fold cross validation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.