Hydrogen is the alternative renewable energy source for addressing the energy crisis, global warming, and climate change. Hydrogen is mostly obtained in the industrial process by steam reforming of natural gas. In the present work, CuCrO2 particles were attached to the surfaces of electrospun CeO2 nanofibers to form CeO2-CuCrO2 nanofibers. However, the CuCrO2 particles did not readily adhere to the surfaces of the CeO2 nanofibers, so a trace amount of SiO2 was added to the surfaces to make them hydrophilic. After the SiO2 modification, the CeO2 nanofibers were immersed in Cu-Cr-O precursor and annealed in a vacuum atmosphere to form CeO2-CuCrO2 nanofibers. The CuCrO2, CeO2, and CeO2-CuCrO2 nanofibers were examined by X-ray diffraction analysis, transmission electron microscopy, field emission scanning electron microscopy, scanning transmission electron microscope, thermogravimetric analysis, and Brunauer–Emmett–Teller studies (BET). The BET surface area of the CeO2-CuCrO2 nanofibers was 15.06 m2/g. The CeO2-CuCrO2 nanofibers exhibited hydrogen generation rates of up to 1335.16 mL min−1 g-cat−1 at 773 K. Furthermore, the CeO2-CuCrO2 nanofibers produced more hydrogen at lower temperatures. The hydrogen generation performance of these CeO2-CuCrO2 nanofibers could be of great importance in industry and have an economic impact.
Dopamine (DA) plays a crucial role in the functioning of the human central nervous system, participating in both physiological and psychological processes. It is an important research topic in biomedical science. However, we need to constantly monitor the concentration of dopamine in the body, and the sensors required for this usually require good sensitivity in order to achieve fast and accurate measurements. In this research project, a CeO2 and CuCrO2 composite nanofiber was prepared for the electrochemical detection of dopamine. Coaxial electrospinning techniques were used to prepare CeO2–CuCrO2 composite nanofibers. The characterization techniques of X-ray diffractometer (XRD), Raman, and X-ray photoelectron spectroscopy (XPS) were used to analyze the composite’s crystal structure, vibrational bonds, and elemental composition, while SEM and TEM were used to analyze the composite’s surface structure, morphology, and microstructure. The prepared nanofiber outer layer was found to have an average thickness of 70.96 nm, average fiber diameter of 192.49 nm, and an average grain size of about ~12.5 nm. The BET analysis was applied to obtain the specific surface area (25.03 m2/gm). The proposed nanofiber-decorated disposable screen-printed carbon electrode acted as a better electrochemical sensor for the detection of dopamine. Moreover, the electrocatalyst had a better limit of detection, 36 nM with a linear range of 10 to 100 μM, and its sensitivity was 6.731 μA μM−1 cm−2. In addition, the proposed electrocatalyst was successfully applied to real-time potential applications, namely, to the analysis of human urine samples in order to obtain better recovery results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.