Binding of von Willebrand factor (vWF) to platelet glycoprotein (GP) Ib-IX-V mediates platelet activation in the early stage of thrombus formation. Kistomin, a snake venom metalloproteinase (SVMP) purified from venom of Calloselasma rhodostoma, has been shown to inhibit vWF-induced platelet aggregation. However, its action mechanism, structure-function relationship, and in vivo antithrombotic effects are still largely unknown. In the present study, cDNA encoding kistomin precursor was cloned and revealed that kistomin is a P-I class SVMP with only a proteinase domain. Further analysis indicated that kistomin specifically inhibited vWF-induced platelet aggregation through binding and cleavage of platelet GPIb␣ and vWF. Cleavage of platelet GPIb␣ by kistomin resulted in release of 45-and 130-kDa soluble fragments, indicating that kistomin cleaves GPIb␣ at two distinct sites. In parallel, cleavage of vWF by kistomin also resulted in the formation of low-molecular-mass multimers of vWF. In ex vivo and in vivo studies, kistomin cleaved platelet GPIb␣ in whole blood. Moreover, GPIb␣ agonist-induced platelet aggregation ex vivo was inhibited, and tail-bleeding time was prolonged in mice administered kistomin intravenously. Kistomin's in vivo antithrombotic effect was also evidenced by prolonging the occlusion time in mesenteric microvessels of mice. In conclusion, kistomin, a P-I class metalloproteinase, has a relative specificity for GPIb␣ and vWF and its proteolytic activity on GPIb␣-vWF is responsible for its antithrombotic activity both in vitro and in vivo. Kistomin can be useful as a tool for studying metalloproteinase-substrate interactions and has a potential being developed as an antithrombotic agent.
impaired collagen-induced platelet aggregation ex vivo through matrix metalloproteinase-dependent GPVI shedding. J Thromb Haemost 2008; 6: 669-76.Summary. Background: C-type lectin proteins (CLPs) have diverse targets including platelet GPIb, GPVI and integrin a 2 b 1 , and affect platelet function in a various way. In this study, we characterized a huge, heterodimeric venom protein, trowaglerix, which belongs to the CLP family. Methods: We purified a potent platelet-aggregation inducer, trowaglerix, from the crude venom of Tropidolaemus wagleri. Biotinylated trowaglerix was used for binding assays, and immunoblotting was used to investigate the signal transduction involved. Results: Two distinct subunits of trowaglerix with similar masses of around 16 kDa were eluted by high-performance liquid chromatography after reduction and alkylation. Trowaglerix induced platelet aggregation of washed human platelets and platelet-rich plasma (PRP) in a concentration-dependent manner. Biotinylated trowaglerix specifically bound to platelet membrane GPVI, but not to GPIb or a 2 integrin. Treatment with trowaglerix induced GPVI loss in human platelets in vitro and impaired the platelet aggregation of mouse PRP ex vivo in response to collagen but not in response to adenosine diphosphate (ADP). However, GM6001, a matrix metalloproteinase (MMP) inhibitor, inhibited trowaglerix-induced GPVI cleavage and restored the platelet responsiveness of PRP to collagen. Conclusions: Trowaglerix activates platelets through specific binding to GPVI, leading to kinases-dependent exposure of functional a IIb b 3 and platelet aggregation, and also induces MMPdependent GPVI shedding from platelets.
The established antiplatelet and anticoagulant agents show beneficial effects in the treatment of thromboembolic diseases; however, these drugs still have considerable limitations. The effects of NP-184, a synthetic compound, on platelet functions, plasma coagulant activity, and mesenteric venule thrombosis in mice were investigated. NP-184 concentration-dependently inhibited the human platelet aggregation induced by collagen, arachidonic acid (AA), and U46619, a thromboxane (TX)A(2) mimic, with IC(50) values of 4.5 +/- 0.2, 3.9 +/- 0.1, and 9.3 +/- 0.5 microM, respectively. Moreover, NP-184 concentration-dependently suppressed TXA(2) formations caused by collagen and AA. In exploring effects of NP-184 on enzymes involved in TXA(2) synthesis, we found that NP-184 selectively inhibited TXA(2) synthase activity with an IC(50) value of 4.3 +/- 0.2 microM. Furthermore, NP-184 produced a right shift of the concentration-response curve of U46619, indicating a competitive antagonism on TXA(2)/prostaglandin H(2) receptor. Intriguingly, NP-184 also caused a concentration-dependent prolongation of the activated partial thromboplastin time (aPTT) with no changes in the prothrombin and thrombin time, indicating that it selectively impairs the intrinsic coagulation pathway. Oral administration of NP-184 significantly inhibited thrombus formation of the irradiated mesenteric venules in fluorescein sodium-treated mice without affecting the bleeding time induced by tail transection. However, after oral administration, NP-184 inhibited the ex vivo mouse platelet aggregation triggered by collagen and U46619 and also prolonged aPTT. Taken together, the dual antiplatelet and anticoagulant activities of NP-184 may have therapeutic potential as an oral antithrombotic agent in the treatment of thromboembolic disorders.
BACKGROUND AND PURPOSE1,4-Naphthoquinones exhibit antiplatelet activity both in vivo and in vitro. In the present study, we investigated the antiplatelet effect of a novel naphthoquinone derivative NP-313, 2-acetylamino-3-chloro-1,4-naphthoquinone and its mechanism of action. EXPERIMENTAL APPROACHWe measured platelet aggregation, Ca 2+ mobilization, thromboxane B2 formation and P-selectin expression and examined several enzymatic activities. Furthermore, we used the irradiated mesenteric venules in fluorescein sodium-treated mice to monitor the antithrombotic effect of NP-313 in vivo. KEY RESULTSNP-313 concentration-dependently inhibited human platelet aggregation induced by collagen, arachidonic acid, thapsigargin, thrombin and A23187. NP-313 also inhibited P-selectin expression, thromboxane B2 formation and [Ca 2+ ]i elevation in platelets stimulated by thrombin and collagen. NP-313 at 10 mM inhibited cyclooxygenase, thromboxane A2 synthase, and protein kinase Ca, whereas it did not affect phospholipase A2 or phospholipase C activity. In the presence of indomethacin and an adenosine 5-diphosphate scavenger, NP-313 concentration-dependently inhibited thrombin-and A23187-induced [Ca 2+ ]i increase through its inhibitory effects on Ca 2+ influx, rather than blocking Ca 2+ release from intracellular stores. NP-313 also inhibited thapsigargin-mediated Ca 2+ influx through store-operated calcium channel but had no effect on Ca 2+ influx through store-independent calcium channel evoked by the diacylglycerol analogue 1-oleoyl-2-acetyl-sn-glycerol. Nevertheless, it had little effect on cyclic AMP and cyclic GMP levels. Also, intravenously administered NP-313 dose-dependently inhibited the thrombus occlusion of the irradiated mesenteric vessels of fluorescein-pretreated mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.