Tungsten-doped vanadium dioxide (VO 2 ) nanopowders were synthesized by thermolysis of (NH 4 ) 5 [(VO) 6 -(CO 3 ) 4 (OH) 9 ]‚10H 2 O at low temperature with, to the best of our knowledge, active white powdery tungstic acid (WPTA) used as a substitutional dopant for the first time. The change in electrical resistance due to the semiconductor-metal transition was measured from -5 to 150 °C by the four-probe method. Differential scanning calorimetry and the resistance-temperature curve of the nanopowders indicated that the phase transition temperature of VO 2 powders was 67.15 °C, but for W-doped VO 2 , the temperature was reduced to 26.46 °C. The results indicated that WPTA was found to be exceptionally effective as a dopant for reducing the transition temperature.
A thick and dense flakelike LiCoO2 with exposed {010} active facets is synthesized using Co(OH)2 nanoflake as a self-sacrificial template obtained from a simple coprecipitation method, and served as a cathode material for lithium ion batteries. When operated at a high cutoff voltage up to 4.5 V, the resultant LiCoO2 exhibits an outstanding rate capability, delivering a reversible discharge capacity as high as 179, 176, 168, 116, and 96 mA h g(-1) at 25 °C under the current rate of 0.1, 0.5, 1, 5, and 10 C, respectively. When charge/discharge cycling at 55 °C, a high specific capacity of 148 mA h g(-1) (∼88% retention) can be retained after 100 cycles under 1 C, demonstrating excellent cycling and thermal stability. Besides, the flakelike LiCoO2 also shows an impressive low-temperature electrochemical activity with specific capacities of 175 (0.1 C) and 154 mA h g(-1) (1 C) at -10 °C, being the highest ever reported for a subzero-temperature lithium storage capability, as well as 52% capacity retention even after 80 cycles under 1 C. Such superior high-voltage electrochemical performances of the flakelike LiCoO2 operated at a wide temperature range are mainly attributed to its unique hierarchical structure with specifically exposed facets. The exposed {010} active facets provide a preferential crystallographic orientation for Li-ion migration, while the micrometer-sized secondary particles agglomerated by submicron primary LiCoO2 flakes endow the electrode with better structural integrity, both of which ensure the LiCoO2 cathode to manifest remarkably enhanced reversible lithium storage properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.