The heat and mass transfer characteristics of the influence of uniform blowing/suction and MHD (magnetohydrodynamic) on the free convection of non-Newtonian fluids over a vertical plate in porous media with internal heat generation and Soret/Dufour effects are numerically analyzed. The surface of the vertical plate has a uniform wall temperature and uniform wall concentration (UWT/UWC). The numerical modeling of this problem attracts considerable attention, owing to its practical applications in biological sciences, electronic cooling, advanced nuclear systems, etc. The transformed governing equations are solved by Keller box method. Comparisons showed excellent agreement with the numerical data in previous works. Numerical data for the dimensionless temperature profile, the dimensionless concentration profile, the local Nusselt number and the local Sherwood number are presented for the main parameters: the magnetic field parameter M, the blowing/suction parameter , the power-law index of the non-Newtonian fluid n and the internal heat generation A *. The physical aspects of the problem are discussed in details.
This paper proposed a closed-form solution for the 2D transient heat conduction in a rectangular cross-section of an infinite bar with the general Dirichlet boundary conditions. The boundary conditions at the four edges of the rectangular region are specified as the general case of space–time dependence. First, the physical system is decomposed into two one-dimensional subsystems, each of which can be solved by combining the proposed shifting function method with the eigenfunction expansion theorem. Therefore, through the superposition of the solutions of the two subsystems, the complete solution in the form of series can be obtained. Two numerical examples are used to investigate the analytic solution of the 2D heat conduction problems with space–time-dependent boundary conditions. The considered space–time-dependent functions are separable in the space–time domain for convenience. The space-dependent function is specified as a sine function and/or a parabolic function, and the time-dependent function is specified as an exponential function and/or a cosine function. In order to verify the correctness of the proposed method, the case of the space-dependent sinusoidal function and time-dependent exponential function is studied, and the consistency between the derived solution and the literature solution is verified. The parameter influence of the time-dependent function of the boundary conditions on the temperature variation is also investigated, and the time-dependent function includes harmonic type and exponential type.
This study proposes a closed-form solution for the two-dimensional (2D) transient heat conduction in a rectangular cross-section of an infinite bar with space–time-dependent Dirichlet boundary conditions and heat sources. The main purpose of this study is to eliminate the limitations of the previous study and add heat sources to the heat conduction system. The restriction of the previous study is that the values of the boundary conditions and initial conditions at the four corners of the rectangular region should be zero. First, the boundary value problem of 2D heat conduction system is transformed into a dimensionless form. Second, the dimensionless temperature function is transformed so that the temperatures at the four endpoints of the boundary of the rectangular region become zero. Dividing the system into two one-dimensional (1D) subsystems and solving them by combining the proposed shifting function method with the eigenfunction expansion theorem, the complete solution in series form is obtained through the superposition of the subsystem solutions. Three examples are studied to illustrate the efficiency and reliability of the method. For convenience, the space–time-dependent functions used in the examples are considered separable in the space–time domain. The linear, parabolic, and sine functions are chosen as the space-dependent functions, and the sine, cosine, and exponential functions are chosen as the time-dependent functions. The solutions in the literature are used to verify the correctness of the solutions derived using the proposed method, and the results are completely consistent. The parameter influence of the time-dependent function of the boundary conditions and heat sources on the temperature variation is also investigated. The time-dependent function includes exponential type and harmonic type. For the exponential time-dependent function, a smaller decay constant of the time-dependent function leads to a greater temperature drop. For the harmonic time-dependent function, a higher frequency of the time-dependent function leads to a more frequent fluctuation of the temperature change.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.