Polarization‐sensitive photodetectors are gaining numerous attention since polarization detection is important in geological remote sensing, atmospheric monitoring, military recon, and medical examination. Among various reported photoactive materials for photodetectors, metal halide perovskites have outstanding advantages such as tunable band gaps, excellent optoelectronic properties, and easy fabrication. Moreover, the characteristics of crystal structure anisotropy and controllable growth orientation of perovskite crystals endow the perovskite photodetector with the ability to identify light polarization states. This review outlines the recent research progress of perovskite photodetectors on polarization‐sensitive detection. Firstly, key device parameters of polarization‐sensitive detection are introduced. Then, the recent progress of polarization‐sensitive perovskite detectors in the field of linear and circular polarization is reviewed according to the different principles of polarization response. Finally, the challenges of polarization‐sensitive perovskite photodetector are discussed.
Heating is a knotty factor contributing to device degradation of flexible organic solar cells (FOSCs), and thermal regulation plays a crucial role in the realization of long operational lifetime. Herein, a passive cooling strategy for stable FOSCs is proposed by boosting the optical-thermal radiative transfer to reduce the insufficient thermal dissipation and the elevated temperature caused by irradiation-induced heating, while retaining their flexibility and portability. A spectrally selective coupling structure consisting of subwavelength hemisphere pattern and distributed Bragg reflector is integrated into FOSCs to collectively enhance out-coupling of infrared radiation and limit near-infrared absorption-induced heat generation, leading to a reduced heat power intensity of 292.5 W cm −2 and the decreased working temperature by 9.6 °C under outdoor sunlight irradiation. The D18:Y6:PC 71 BM-based FOSCs achieve a power conversion efficiency of over 17% with a prolonged T 80 lifetime as long as one year under real outdoor working conditions. These results represent a new opportunity for enhancing the operational stability of FOSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.