Using cultivar Jinshan 27 as test material and high-yield maize cultivar as the control, we analyzed the root characteristics of super high-yield maize. The results showed that the percentage of roots in deep soil was higher, the biggest roots width tended to be deeper, the number of root per plant in deep soil layer increased for super high-yield maize, and the difference of root parameters enlarged with the increase of the soil depth compared with the control. The root dry weight was first up then down in the growing process, and the maximum value appeared at silking stage and showed extremely difference from the control. The percentage of root weight at 0-20 cm soil layer was lower obviously than the control, and that at the soil layer over 40 cm was more than the control at every growing stage. Ratio of shoot/root was close to the control at early growth stage, and lower than the contrast at later growing stage. Changes of root vigor showed a single apex curve in growing and the peak value appeared at silking stage. Root vigor at every growing stage changed as a single apex curve with the increase of soil depth under super high-yield cultivation, but root vigor of the control changed greatly in different growing stages. The activities of SOD&POD of root system per soil layer were higher than the control at silking and milking stages in super high-yield maize, but MDA content was lower than the contrast. The root growing condition and nutrient supply were improved by deep ploughing, optimizing fertilization and high planting density, which not only improve the deep root growing, but also keep root a higher physiological activity, providing a basis for production of super high-yield maize.
A field research was conducted in the Agricultural High-tech Demonstration Park in Horqin District of Tongliao, Inner Mongolia, using the maize variety Nonghua 101 with two cropping modes, including strip-till with staggered planting (seeding strip tillage, 15 cm + 45 cm narrow-double row staggered sowing, TGCW) and conventional tillage with equal row space (rotary tillage with row space of 60 cm, CK), and three planting densities (67,500 plants hm-2 , 82,500 plants hm-2 , and 97,500 plants hm-2) in 2017 and 2018 to study the effect of strip-till with staggered planting on regulating spring maize yield formation and coordination characteristics of shoot-root in irrigation areas of Xiliao river plain. The model of that strip-till with staggered planting enhanced maize yield by 13.1% and 13.8% in 2017 and 2018, under the planting density 82,500 plants hm-2 compared with CK, respectively. The strip-till with staggered planting showed a distinct advantage on the amount and rate of dry matter accumulation after silking, which obviously delayed the senility of leaves in later growth stage, meanwhile, compared with CK, the light transmittance significantly increased in or above panicle layers. The leaf area index, net photosynthetic rate and population photosynthetic potential in the model of strip-till with staggered planting were higher than those in CK in late growth stage. At later growing stage, the strip-till with staggered planting had significantly higher root dry weight than CK in different soil layers, with the highest root ratio in 20-60 cm, especially under higher planting density. The grain yield against per unit of root weight at silking and root-shoot ratio at maturity had a distinct advantage. In conclusion the strip-till with staggered planting combined with high planting density can increase light transmission rate in above-spike layer in late growing stage, alleviate leaf area decline, increase production capacity, facilitate root growth and increase root ratio in deeper soil layers. Shoot-root coordination under dense planting is one of the main reasons facilitating yield increase of spring maize in irrigation areas of Xiliao river plain.
Herbage dormancy is a protective mechanism against adverse conditions, including low and irregular emergence rates during seeding. Phalaris arundinacea is an efficient C3 plant, which can be used for feed, fuel, water and soil conservation, and as an indicator plant for water eutrophication. Previous studies have found that its seeds are dormant, significantly affecting its agricultural use. However, the phytohormone gibberellic acid (GA3) can significantly shorten the dormancy period. GA3-related proteins that influence seed dormancy in P. arundinacea were investigated with two-dimensional electrophoresis and mass spectrometry. Based on the green plant protein NCBI database, 30 proteins showed significantly increased expression after GA3 treatment. Of these, 16 were up-regulated and 14 down-regulated. Of these, 25 proteins were identified by MALDI-MS-TOF and 20 were functionally identified. The identified proteins were involved in sugar metabolism, protein metabolism, RNA synthesis, fat metabolism, signal transduction, transportation, cytoskeleton, redox reactions and biosynthetic pathways. We carried out a key analysis of four proteins identified based on the Poaceae pasture proteome. The results indicated that germination induced by GA3 may be related to increased levels of peroxidase promoting glucose 6-phosphate oxidation through the reversible redox reaction of hydroquinone and quinone, thereby promoting the pentose phosphate pathway and initiating the cessation of dormancy and the start germination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.