SummaryThe growth and yield of many crops, including cotton, are affected by water deficit. Cotton has evolved drought specific as well as general morpho‐physiological, biochemical and molecular responses to drought stress, which are discussed in this review. The key physiological responses against drought stress in cotton, including stomata closing, root development, cellular adaptations, photosynthesis, abscisic acid (ABA) and jasmonic acid (JA) production and reactive oxygen species (ROS) scavenging, have been identified by researchers. Drought stress induces the expression of stress‐related transcription factors and genes, such as ROS scavenging, ABA or mitogen‐activated protein kinases (MAPK) signalling genes, which activate various drought‐related pathways to induce tolerance in the plant. It is crucial to elucidate and induce drought‐tolerant traits via quantitative trait loci (QTL) analysis, transgenic approaches and exogenous application of substances. The current review article highlights the natural as well as engineered drought tolerance strategies in cotton.
Upconversion nanoparticle (UCNP)-mediated photodynamic therapy has shown great effectiveness in increasing the tissue-penetration depth of light to combat deep-seated tumors. However, the inevitable phototoxicity to normal tissues resulting from the lack of tumor selectivity remains as a major challenge. Here, the development of tumor-pH-sensitive photodynamic nanoagents (PPNs) comprised of self-assembled photosensitizers grafted pH-responsive polymeric ligands and UCNPs is reported. Under neutral pH conditions, photosensitizers aggregated in the PPNs are self-quenched; however, upon entry into a tumor microenvironment with lower pH, the PPNs not only exhibit enhanced tumor-cell internalization due to charge reversal but also are further disassembled into well-dispersed nanoparticles in the endo/lysosomes of tumor cells, enabling the efficient activation of photosensitizers. The results demonstrate the attractive properties of both UCNP-mediated deep-tissue penetration of light and high therapeutic selectivity in vitro and in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.