Among the electrolyzers under development for CO2 electroreduction at practical reaction rates, gas-fed approaches that use gas diffusion electrodes (GDEs) as cathodes are the most promising. However, the insufficient long-term stability of these technologies precludes their commercial deployment. The structural deterioration of the catalyst material is one possible source of device durability issues. Unfortunately, this issue has been insufficiently studied in systems using actual technical electrodes. Herein, we make use of a morphologically tailored Ag-based model nanocatalyst [Ag nanocubes (NCs)] assembled on a zero-gap GDE electrolyzer to establish correlations between catalyst structures, experimental environments, electrocatalytic performances, and morphological degradation mechanisms in highly alkaline media. The morphological evolution of the Ag–NCs on the GDEs induced by the CO2 electrochemical reduction reaction (CO2RR), as well as the direct mechanical contact between the catalyst layer and anion-exchange membrane, is analyzed by identical location and post-electrolysis scanning electron microscopy investigations. We find that at low and mild potentials positive of −1.8 V versus Ag/AgCl, the Ag–NCs undergo no apparent morphological alteration induced by the CO2RR, and the device performance remains stable. At more stringent cathodic conditions, device failure commences within minutes, and catalyst corrosion leads to slightly truncated cube morphologies and the appearance of smaller Ag nanoparticles. However, comparison with complementary CO2RR experiments performed in H-cell configurations in a neutral environment clearly proves that the system failure typically encountered in the gas-fed approaches does not stem solely from the catalyst morphological degradation. Instead, the observed CO2RR performance deterioration is mainly due to the local high alkalinity that inevitably develops at high current densities in the zero-gap approach and leads to the massive precipitation of carbonates which is not observed in the aqueous environment (H-cell configuration).
Hole transporting materials (HTMs) play a crucial role in achieving highly efficient and stable perovskite solar cells (PSCs). Spirotyped materials being the most widely used HTMs are commonly utilized with dopants, such as Li-TFSI, to improve their carrier mobility significantly. However, dopants could affect the morphology of hole transporting layer negatively by forming defects and pinholes which restrict the performance of devices. Here, we adopt the extended πconjugated structures N-ethylcarbazole and dibenzothiophene to substitute the donor group 4-methoxyphenyl of spiro-OMeTAD, devising two novel HTMs, SC and ST, respectively. Notably, SC possesses low crystallinity and good solubility due to the existence of ethyl in side groups, leading to decent miscibility with Li-TFSI to prevent unfavorable phase-separation. The SC-based device delivers the best power conversion efficiency (PCE) of 21.76% which is higher than that of spiro-OMeTAD (20.73%), attributed to the formation of smooth and pinhole-free morphology. Moreover, it exhibits long-term stability and retains over 90% of initial PCE value for more than 30 days without encapsulation in ambient air. In contrast, the STbased device suffers from dense pinholes induced by its relatively high crystallinity and poor solubility, resulting in a low PCE of 18.18% and inferior stability. Thus, it is effective to modify the side groups in spiro-typed HTMs with specific structures to obtain predictable properties, fabricating PSCs with high efficiency and stability facilely.
The two-dimensional (2D)/three-dimensional (3D) heterojunction perovskite solar cell (PSC) has recently been recognized as a promising photovoltaic structure for achieving high efficiency and long-term stability. Rational design of the 2D spacer cation is important to achieve a win–win situation for defects’ passivation and photogenerated carrier extraction. Herein, we carry out first-principles calculation to analyze the dipole moment of phenethylamine-type molecules and their resulting 2D/3D perovskites. Based on the results of theoretical calculation, the dipole moment of 2D cations can be well tuned by varying the number of fluorine atoms on the para-position of the benzene ring, which further determines the interfacial dipole across the 2D/3D heterojunction interface. A high dipole 2D perovskite layer at the interface between the 3D perovskite and hole-transporting material is found to promote charge transport and suppress charge trapping efficiently. As a result, our 2D/3D PSCs exhibit a champion power conversion efficiency over 22% and a fill factor over 83%. Moreover, our solar cells also show a remarkable stability, maintaining 80% of its initial efficiency for more than 1400 h without encapsulation under a 30 ± 5% relative humidity.
Control over the shape of a metal nanostructure grants control over its properties, but the processes that cause solution-phase anisotropic growth of metal nanostructures are not fully understood. This article shows why the addition of a small amount (75–100 μM) of iodide ions to a Cu nanowire synthesis results in the formation of Cu microplates. Microplates are 100 nm thick and micronwide crystals that are thought to grow through atomic addition to {100} facets on their sides instead of the {111} facets on their top and bottom surfaces. Single-crystal electrochemical measurements show that the addition of iodide ions decreased the rate of Cu addition to Cu(111) by 8.2 times due to the replacement of adsorbed chloride by iodide. At the same time, the addition of iodide ions increased the rate of Cu addition to Cu(100) by 4.0 times due to the replacement of a hexadecylamine (HDA) self-assembled monolayer with the adsorbed iodide. The activation of {100} facets and passivation of {111} facets with increasing iodide ion concentration correlated with an increasing yield of microplates. Ab initio thermodynamics calculations show that, under the experimental conditions, a minority of iodide ions replaces an overwhelming majority of chloride and HDA on both Cu(100) and Cu(111). While Cu nanowire formation is predicted (and observed) in solutions containing chloride and HDA, the calculations indicate that a strong thermodynamic driving force occurs for {111} facet (and microplate) growth when a small amount of iodide is present, consistent with the experiment.
The stacking of 2D perovskites on the top of 3D perovskites has been recognized as a promising interfacial treatment approach to improve the stability and efficiency of planar perovskite solar...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.