Four deep eutectic solvents (DESs), namely, glycerol/chlorocholine (glycerol/ChCl), urea/ChCl, citric acid/ChCl, and oxalic acid/ChCl, were synthesized and their performance in the dissolution of cellulose was studied. The results showed that the melting point of the DESs varied with the proportion of the hydrogen bond donor material. The viscosity of the DESs changed considerably with the change in temperature; as the temperature increased, the viscosity decreased and the electrical conductivity increased. Oxalic acid/ChCl exhibited the best dissolution effects on cellulose. The microscopic morphology of cellulose was observed with a microscope. The solvent system effectively dissolved the cellulose, and the dissolution method of the oxalic acid/ChCl solvent on cellulose was preliminarily analyzed. The ChCl solvent formed new hydrogen bonds with the hydroxyl groups of the cellulose through its oxygen atom in the hydroxyl group and its nitrogen atom in the amino group. That is to say, after the deep eutectic melt formed an internal hydrogen bond, a large number of remaining ions formed a hydrogen bond with the hydroxyl groups of the cellulose, resulting in a great dissolution of the cellulose. Although the cellulose and regenerated cellulose had similar structures, the crystal form of cellulose changed from type I to type II.
The synthesis and characterization of a degradable version of poly(acrylic acid), poly(glyceric acid carbonate), are reported. Specifically, atactic and isotactic poly(benzyl glycidate carbonate)s are obtained via the ring-opening copolymerization of rac-/(R)-benzyl glycidate with CO2 using a bifunctional rac-/(S,S)-cobalt salen catalyst in high carbonate linkage selectivity (>99%) and polymer/cyclic carbonate selectivity (∼90%). Atactic poly(benzyl glycidate carbonate) is an amorphous material with a T(g) (glass transition temperature) of 44 °C, while its isotactic counterpart synthesized from enantiopure epoxide and catalyst is semicrystalline with a T(m) (melting temperature) = 87 °C. Hydrogenolysis of the resultant polymers affords the poly(glyceric acid carbonate). Poly(glyceric acid carbonate) exhibits an improved cell cytotoxicity profile compared to poly(acrylic acid). Poly(glyceric acid carbonate)s also degrade remarkably fast (t(1/2) ≈ 2 weeks) compared to poly(acrylic acid). Cross-linked hydrogels prepared from poly(glyceric acid carbonate) and poly(ethylene glycol) diaziridine show significant degradation in pH 8.4 aqueous buffer solution compared to similarly prepared hydrogels from poly(acrylic acid) and poly(ethylene glycol) diaziridine.
Perfluorosulfonated ionomer (PFSI) was synthesized and PFSI membranes were prepared via a solutioncast method and annealed at different temperatures from 150 to 2308C. The annealing effect on water content, proton conductivity, and methanol permeability were reported and discussed. X-ray diffraction and small angle X-ray scattering were used to test the structure of the membranes. It was found that annealing increased the proton conductivity of the membranes because heat-treatment helped to free the sulfonic groups that were buried in the polymer segments and form more organized ionic clusters. Water content and methanol permeability of the annealed membranes decreased with increasing annealing temperature. Simultaneously, annealing induced more compact chain packing structure, which eventually affected the transport of the proton and methanol through these ionomer membranes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.