Dimensionality reduction, including feature extraction and selection, is one of the key points for text classification. In this paper, we propose a mixed method of dimensionality reduction constructed by principal components analysis and the selection of components. Principal components analysis is a method of feature extraction. Not all of the components in principal component analysis contribute to classification, because PCA objective is not a form of discriminant analysis (see, e.g. . In this context, we present a function of components selection, which returns the useful components for classification by the indicators of the performances on the different subsets of the components. Compared to traditional methods of feature selection, SVM classifiers trained on selected components show improved classification performance and a reduction in computational overhead.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.