The chromo-natural inflation (CNI) scenario predicts a potentially detectable chiral gravitational wave signal, generated by a Chern-Simons coupling between a rolling scalar axion field and an SU(2) gauge field with an isotropy-preserving classical background during inflation. However, the generation of this signal requires a very large integer Chern-Simons level, which can be challenging to explain or embed in a UV-complete model. We show that this challenge persists in the phenomenologically viable spectator field CNI (S-CNI) model. Furthermore, we show that a clockwork scenario giving rise to a large integer as a product of small integers can never produce a Chern-Simons level large enough to have successful S-CNI phenomenology. We briefly discuss other constraints on the model, both in effective field theory based on partial-wave unitarity bounds and in quantum gravity based on the Weak Gravity Conjecture, which may be relevant for further explorations of alternative UV completions.
The chromo-natural inflation (CNI) scenario predicts a potentially detectable chiral gravitational wave signal, generated by a Chern-Simons coupling between a rolling scalar axion field and an SU(2) gauge field with an isotropy-preserving classical background during inflation. However, the generation of this signal requires a very large integer Chern-Simons level, which can be challenging to explain or embed in a UV-complete model. We show that this challenge persists in the phenomenologically viable spectator field CNI (S-CNI) model. Furthermore, we show that a clockwork scenario giving rise to a large integer as a product of small integers can never produce a Chern-Simons level large enough to have successful S-CNI phenomenology. We briefly discuss other constraints on the model, both in effective field theory based on partial-wave unitarity bounds and in quantum gravity based on the Weak Gravity Conjecture, which may be relevant for further explorations of alternative UV completions.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.