Age-related hearing loss (ARHL), the hearing loss associated with aging, is a vital problem in present society. The severity of hearing loss is possibly associated with the degeneration of cochlear cells. Mitochondria play a key role in the energy supply, cellular redox homeostasis, signaling, and regulation of programmed cell death. In this review, we focus on the central role of mitochondria in ARHL. The mitochondrial redox imbalance and mitochondrial DNA mutation might collaboratively involve in the process of cochlear senescence in response to the aging stress. Subsequent responses, including alteration of mitochondrial biogenesis, mitophagy, apoptosis and paraptosis, participate in the aging process from different respects.
The synapse between inner hair cells (IHCs) and type I spiral ganglion neurons (SGNs) has been identified as a sensitive structure to noise-induced damage in the mammalian cochlea. Since this synapse provides the major information pathway from the cochlea to the auditory brain, it is important to maintain its integrity. Neurotrophin-3 (NT-3) has been known to play an important role in the development and the functional maintenance of this synapse. Application of exogenous NT-3, or overexpression of this gene in a transgenic animal model, have shown the value to protect this synapse from noise-induced damage. In the present study, NT-3 overexpression was induced by cochlear gene transfection before noise exposure via the use of an adeno-associated viral (AAV) vector. We found that such an overexpression provided a significant synaptic protection against a noise exposure that caused massive damage to the synapses, likely due to it promoting the repair of the synapse after the initial damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.