The fuzzy cognitive map (FCM) has gradually emerged as a powerful paradigm for knowledge representation and a simulation mechanism that is applicable to numerous research and application fields. However, since efficient methods to determine the states of the investigated system and to quantify causalities that are the very foundations of FCM theory are lacking, constructing FCMs for complex causal systems greatly depends on expert knowledge. The manually developed models have a substantial shortcoming due to the model subjectivity and difficulties with assessing its reliability. In this paper, we proposed a fuzzy neural network to enhance the learning ability of FCMs. Our approach incorporates the inference mechanism of conventional FCMs with the determination of membership functions, as well as the quantification of causalities. In this manner, FCM models of the investigated systems can automatically be constructed from data and, therefore, operate with less human intervention. In the employed fuzzy neural network, the concept of mutual subsethood is used to describe the causalities, which provides more transparent interpretation for causalities in FCMs. The effectiveness of the proposed approach in handling the prediction of time series is demonstrated through many numerical simulations.Index Terms-Fuzzy cognitive maps (FCMs), fuzzy neural network, fuzzy-rule identification, mutual subsethood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.