The human lung was quantified and visualized by photon transport in this paper. A Monte Carlo (MC) simulation of voxelized media was used with the visible Chinese human (VCH). This study theoretically explored the feasibility of non-invasive optical detection of pulmonary hemodynamics, and investigated the optimal location of the light source in the lung photon migration and optimized the source-detector distance. The light fluence intensity showed that the photon penetration depth was 6-8.4 mm in the human lung. The optimal distance from the light source to the detector was 2.7-2.9 cm, but the optimal distance of the superior lobe of right lung was 3.3-3.5 cm. We then conducted experiments on diffuse light reflectance using NIRS on 14 volunteers. These measurements agree well with the simulation results. All the results demonstrated the great potential of non-invasive monitoring of pulmonary hemodynamics and contribute to the study of human lungs in the biomedical optics community
.
Significance
In recent years, the incidence rate of pulmonary embolism (PE) has increased dramatically. Currently, the correct diagnosis rate of PE in China is relatively low, and the diagnosis error rate and missed diagnosis rate were as high as about 80%. The most standard method of PE detection is pulmonary artery digital subtraction angiography (DSA), but pulmonary artery DSA is an invasive examination, and patients can have certain risks and discomfort. Noninvasive monitoring of PE remains challenging in cardiovascular medicine.
Aim
We attempt to study the light propagation in human thoracic tissues and explore the possibility of near-infrared spectroscopy (NIRS) in noninvasive detection of PE.
Approach
In this study, by utilizing the Monte Carlo simulation method for voxelized media and the Visible Chinese Human dataset, we quantified and visualized the photon migration in human thoracic region. The influence of the development (three levels) of PE on the light migration was observed.
Results
Results showed that around 4.6% light fluence was absorbed by the pulmonary tissue. The maximum signal sensitivity distribution reached 0.073% at the 2.8- to 3.1-cm light source–detector separation. The normalized light intensity was significantly different among different PE levels and formed a linear relationship (
,
).
Conclusions
The study found that photons could reach the pulmonary artery tissue, the light intensity was linearly related to the degrees of embolism, PE could be quantitatively diagnosed by NIRS. Meanwhile, the optimized distance in between the light source and detector, 2.8 to 3.1 cm, was recommended to be used in future potential noninvasive optical diagnosis of PE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.