The gerbil is a popular species for experimental middle-ear research. The goal of this study is to develop a 3D finite-element model to quantify the mechanics of the gerbil middle ear at low frequencies (up to about 1 kHz). The 3D reconstruction is based on a magnetic resonance imaging dataset with a voxel size of about 45 mm, and an x-ray micro-CT dataset with a voxel size of about 5.5 mm, supplemented by histological images. The eardrum model is based on moiré shape measurements. Each individual structure in the model was assumed to be homogeneous with isotropic, linear, and elastic material properties derived from a priori estimates in the literature. The behavior of the finite-element model in response to a uniform acoustic pressure on the eardrum of 1 Pa is analyzed. Sensitivity tests are done to evaluate the significance of the various parameters in the finiteelement model. The Young_s modulus and the thickness of the pars tensa have the most significant effect on the load transfer between the eardrum and the ossicles and, along with the Young_s modulus of the pedicle and stapedial annular ligament, on the displacements of the stapes. Overall, the model demonstrates good agreement with low-frequency experimental data. For example, (1) the maximum footplate displacement is about 35 nm; (2) the umbo/stapes displacement ratio is found to be about 3.5; (3) the motion of the stapes is predominantly piston-like; and (4) the displacement pattern of the eardrum shows two points of maximum displacement, one in the posterior region and one in the anterior region. The effects of removing or stiffening the ligaments are comparable to those observed experimentally.
A three-dimensional nonlinear finite-element model of a 22-day-old newborn ear canal is presented. The geometry is based on a clinical x-ray CT scan. A nonlinear hyperelastic constitutive law is applied to model large deformations. The Young's modulus of the soft tissue is found to have a significant effect on the ear-canal volume change, which ranges from approximately 27% to 75% over the static-pressure range of ±3kPa. The effects of Poisson's ratio and of the ratio C 10 : C 01 in the hyperelastic model are found to be small. The volume changes do not reach a plateau at high pressures, which implies that the newborn ear-canal wall would not be rigid in tympanometric measurements. The displacements and volume changes calculated from the model are compared with available experimental data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.