The use of synthetic dyes is commonplace in many industries, and the effluent is often dumped into the environment with no prior treatment. The aim of the present study was to analyze the use of an industrial strain of Saccharomyces cerevisiae (Meyen) for the removal of the textile dye Acid Blue 161 from an aqueous solution. Kinetic, isotherm, and thermodynamic models were created to evaluate the biosorption mechanisms. Fourier transfer infrared (FT-IR) spectroscopy was used to characterize and identify possible binding sites. A toxicity test was also performed using Artemia salina to analyze the degree of toxicity of the dye following treatment. The kinetic results demonstrated the occurrence of intraparticle diffusion in the yeast cells as the controlling mechanism of the sorption process. Biosorption followed the Langmuir model, except at pH 8.50, when it fit the Freundlich model. The thermodynamic results demonstrate that the biosorption process is spontaneous and endothermic. The FT-IR analyses confirmed the occurrence of a chemical reaction in acid pH, but physical adsorption only occurred at pH 8.50. The toxicity test showed that the use of the yeast biomass led to the complete removal of toxicity from the dye solution, demonstrating the effectiveness of the biosorption process in the treatment of effluents contaminated with these compounds.
Microorganisms are the primary responsible for food poisoning and food spoilage. The purpose of this study was to evaluate different fruit washing methods with tap water, electrolyzed water and rhamnolipids solution produced by Pseudomonas aeruginosa LBI, in order to inhibit microbial growth. The tested organism was Eugenia uniflora. The fruits were washed and periodically inoculated into culture media to evaluate and count the colonies on the fruit surface. It was also observed the deterioration level of the fruits after each treatment. The results showed that treatment with rhamnolipids were the most efficient, inhibiting the growth of fungi and bacteria. The electrolyzed water proved to be very efficient in bacterial inhibition at the initial time, but in the final time it did not present any inhibitory effect. The electrolyzed water was also not effective in eliminating fungus. Washing with tap water was the less efficient treatment of all. The only treatment that showed an increased durability has been with rhamnolipids, increasing shelf life by up to two days. Thus rhamnolipids are the most recommended method for fruits sanitation.
The aim of this work was to evaluate the removal of three different textile dyes through the coagulation action of the powder and supernatant of Moringa oleifera seeds. The pH of the solution and mass concentrations of the adsorbent were varied. Fourier transform infrared (FT-IR) spectrophotometry was used to evaluate the main interaction sites of the M. oleifera coagulants with the dyes. Bioassays were also conducted with Lactuca sativa and Eruca sativa seeds to evaluate the toxicity of the M. oleifera coagulants and dyes. Each dye interacted differently with the M. oleifera powder and supernatant; however, dye removal rates were higher than 70% even when varying the pH of the solution. FT-IR spectrophotometry revealed that the linkage of the dyes with the M. oleifera coagulants occurs through chemical interactions, and the coagulating protein of M. oleifera was confirmed as the removing agent. Depending on the dye molecule, the pH of the solution also exerted a strong influence on coagulation. The phytotoxicity tests showed that the coagulants in the seeds of M. oleifera are more toxic than the dyes tested. In conclusion, although efficient and economically feasible, the application of M. oleifera coagulants requires further investigation, especially with regard to ecotoxicology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.