This paper aims at realizing an automatic parking method through a bird's eye view vision system. With this method, vehicles can make robust and real-time detection and recognition of parking spaces. During parking process, the omnidirectional information of the environment can be obtained by using four on-board fisheye cameras around the vehicle, which are the main part of the bird's eye view vision system. In order to achieve this purpose, a polynomial fisheye distortion model is firstly used for camera calibration. An image mosaicking method based on the Levenberg-Marquardt algorithm is used to combine four individual images from fisheye cameras into one omnidirectional bird's eye view image. Secondly, features of the parking spaces are extracted with a Radon transform based method. Finally, double circular trajectory planning and a preview control strategy are utilized to realize autonomous parking. Through experimental analysis, we can see that the proposed method can get effective and robust real-time results in both parking space recognition and automatic parking.
Abstract-With the popularity of sensor-rich mobile devices (e.g., smart phones and wearable devices), Mobile Crowdsourcing (MCS) has emerged as an effective method for data collection and processing. Compared with traditional Wireless Sensor Networking (WSN), MCS holds many advantages such as mobility, scalability, cost-efficiency, and human intelligence. However, MCS still faces many challenges with regard to security, privacy and trust. This paper provides a survey of these challenges and discusses potential solutions. We analyze the characteristics of MCS, identify its security threats, and outline essential requirements on a secure, privacy-preserving and trustworthy MCS system. Further, we review existing solutions based on these requirements and compare their pros and cons. Finally, we point out open issues and propose some future research directions.
Cooperative Adaptive Cruise Control (CACC) is considered as a key enabling technology to automatically regulate the intervehicle distances in a vehicle platoon to improve traffic efficiency while maintaining safety. Although the wireless communication and physical processes in the existing CACC systems are integrated in one control framework, the coupling between wireless communication reliability and system states is not well modeled. Furthermore, the research on the impact of jamming attacks on the system stability and safety is largely open. In this paper, we conduct a comprehensive analysis on the stability and safety of the platoon under the wireless Rician fading channel model and jamming attacks. The effect of Rician fading and jamming on the communication reliability is incorporated in the modeling of string dynamics such that it captures its state dependency. Time-domain definition of string stability is utilized to delineate the impact of Rician fading and jamming on the CACC system's functionality and string stability. Attacker's possible locations at which it can destabilize the string is further studied based on the proposed model. From the safety perspective, reachable states (i.e., inter-vehicle distances) of the CACC system under unreliable wireless fading channels and jamming attacks is studied. Safety verification is investigated by examining the inter-vehicle distance trajectories. We propose a methodology to compute the upper and lower bounds of the trajectories of inter-vehicle distances between the lead vehicle and its follower. We conduct extensive simulations to evaluate the system stability and safety under jamming attacks in different scenarios. We identify that channel fading can degrade the performance of the CACC system, and the platoon's safety is highly sensitive to jamming attacks. The best location to launch the jamming attack to destabilize the platoon is above the second vehicle in the platoon. The platoon is more vulnerable to jamming attacks when the lead vehicle is decelerating.
The network theory is widely applied to improve the reliability of a complex electromechanical system. In this application, system reliability assessment with network theory has been paid a great deal of attention. Because of instrument malfunctions, staff omissions, imperfect inspection strategies, and complex structures, field failure data are often subject to interval censoring, making the holistic reliability assessment becomes a difficult task. Most traditional methods assume reliability of critical components or partial reliability as system reliability, which may cause a large bias in system reliability estimation. This paper proposes a novel method to evaluate and predict the system reliability of a complex electromechanical system subject to the insufficient fault data problem from a network perspective. First, the system modeling based on network theory is developed to describe the topology of a holistic system. Second, interval-valued intuitionistic hesitant fuzzy number is proposed in order to solve insufficient data for single component. Then, a new measurecomprehensive reliability-that can reflect the reliability of nodes in combination with functional properties and topological properties, which are formulated by failure data and network model, respectively, is constructed for system reliability assessment. Subsequently, an improved system reliability model based on percolation theory is given in terms of comprehensive reliability of nodes. Finally, to verify the effectiveness of the proposed method, a simulation and a real case study for traction system are implemented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.