To solve the information explosion problem and enhance user experience in various online applications, recommender systems have been developed to model users' preferences. Although numerous efforts have been made toward more personalized recommendations, recommender systems still suffer from several challenges, such as data sparsity and cold-start problems. In recent years, generating recommendations with the knowledge graph as side information has attracted considerable interest. Such an approach can not only alleviate the above mentioned issues for a more accurate recommendation, but also provide explanations for recommended items. In this paper, we conduct a systematical survey of knowledge graph-based recommender systems. We collect recently published papers in this field, and group them into three categories, i.e., embedding-based methods, connection-based methods, and propagation-based methods. Also, we further subdivide each category according to the characteristics of these approaches. Moreover, we investigate the proposed algorithms by focusing on how the papers utilize the knowledge graph for accurate and explainable recommendation. Finally, we propose several potential research directions in this field.
Transfer learning aims at improving the performance of target learners on target domains by transferring the knowledge contained in different but related source domains. In this way, the dependence on a large number of target domain data can be reduced for constructing target learners. Due to the wide application prospects, transfer learning has become a popular and promising area in machine learning. Although there are already some valuable and impressive surveys on transfer learning, these surveys introduce approaches in a relatively isolated way and lack the recent advances in transfer learning. As the rapid expansion of the transfer learning area, it is both necessary and challenging to comprehensively review the relevant studies. This survey attempts to connect and systematize the existing transfer learning researches, as well as to summarize and interpret the mechanisms and the strategies of transfer learning in a comprehensive way, which may help readers have a better understanding of the current research status and ideas. Different from previous surveys, this survey paper reviews over forty representative transfer learning approaches from the perspectives of data and model. The applications of transfer learning are also briefly introduced. In order to show the performance of different transfer learning models, twenty representative transfer learning models are used for experiments. The models are performed on three different datasets, i.e., Amazon Reviews, Reuters-21578, and Office-31. And the experimental results demonstrate the importance of selecting appropriate transfer learning models for different applications in practice.
Recent advances in mobile devices and their sensing capabilities have enabled the collection of rich contextual information and mobile device usage records through the device logs. These context-rich logs open a venue for mining the personal preferences of mobile users under varying contexts and thus enabling the development of personalized context-aware recommendation and other related services, such as mobile online advertising. In this article, we illustrate how to extract personal context-aware preferences from the context-rich device logs, or context logs for short, and exploit these identified preferences for building personalized context-aware recommender systems. A critical challenge along this line is that the context log of each individual user may not contain sufficient data for mining his or her context-aware preferences. Therefore, we propose to first learn common context-aware preferences from the context logs of many users. Then, the preference of each user can be represented as a distribution of these common context-aware preferences. Specifically, we develop two approaches for mining common context-aware preferences based on two different assumptions, namely, context-independent and context-dependent assumptions, which can fit into different application scenarios. Finally, extensive experiments on a real-world dataset show that both approaches are effective and outperform baselines with respect to mining personal context-aware preferences for mobile users.
With the rapid prevalence of smart mobile devices, the number of mobile Apps available has exploded over the past few years. To facilitate the choice of mobile Apps, existing mobile App recommender systems typically recommend popular mobile Apps to mobile users. However, mobile Apps are highly varied and often poorly understood, particularly for their activities and functions related to privacy and security. Therefore, more and more mobile users are reluctant to adopt mobile Apps due to the risk of privacy invasion and other security concerns. To fill this crucial void, in this paper, we propose to develop a mobile App recommender system with privacy and security awareness. The design goal is to equip the recommender system with the functionality which allows to automatically detect and evaluate the security risk of mobile Apps. Then, the recommender system can provide App recommendations by considering both the Apps' popularity and the users' security preferences. Specifically, a mobile App can lead to security risk because insecure data access permissions have been implemented in this App. Therefore, we first develop the techniques to automatically detect the potential security risk for each mobile App by exploiting the requested permissions. Then, we propose a flexible approach based on modern portfolio theory for recommending Apps by striking a balance between the Apps' popularity and the users' security concerns, and build an App hash tree to efficiently recommend Apps. Finally, we evaluate our approach with extensive experiments on a largescale data set collected from Google Play. The experimental results clearly validate the effectiveness of our approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.