Channel estimation is very challenging when the receiver is equipped with a limited number of radio-frequency (RF) chains in beamspace millimeter-wave massive multipleinput and multiple-output systems. To solve this problem, we exploit a learned denoising-based approximate message passing (LDAMP) network. This neural network can learn channel structure and estimate channel from a large number of training data. Furthermore, we provide an analytical framework on the asymptotic performance of the channel estimator. Based on our analysis and simulation results, the LDAMP neural network significantly outperforms state-of-the-art compressed sensing-based algorithms even when the receiver is equipped with a small number of RF chains.
Intelligent communication is gradually becoming a mainstream direction. As a major branch of machine learning, deep learning (DL) has been applied in physical layer communications and demonstrated an impressive performance improvement in recent years. However, most of the existing works related to DL focus on data-driven approaches, which consider the communication system as a black box and train it by using a huge volume of data. Training a network requires sufficient computing resources and extensive time, both of which are rarely found in communication devices. By contrast, modeldriven DL approaches combine communication domain knowledge with DL to reduce the demand for computing resources and training time. This article discusses the recent advancements in model-driven DL approaches in physical layer communications, including transmission schemes, receiver design, and channel information recovery. Several open issues for future research are also highlighted.
In this paper, we propose a model-driven deep learning network for multiple-input multiple-output (MIMO) detection. The structure of the network is specially designed by unfolding the iterative algorithm. Some trainable parameters are optimized through deep learning techniques to improve the detection performance. Since the number of trainable variables of the network is equal to that of the layers, the network can be easily trained within a very short time. Furthermore, the network can handle time-varying channel with only a single training. Numerical results show that the proposed approach can improve the performance of the iterative algorithm significantly under Rayleigh and correlated MIMO channels.
In this paper, we investigate the model-driven deep learning (DL) for joint MIMO channel estimation and signal detection (JCESD), where signal detection considers channel estimation error and channel statistics while channel estimation is refined by detected data and takes the signal detection error into consideration. In particular, the MIMO signal detector is specially designed by unfolding an iterative algorithm and adding some trainable parameters. Since the number of trainable parameters is much fewer than the data-driven DL based signal detector, the model-driven DL based MIMO signal detector can be rapidly trained with a much smaller data set. Furthermore, the proposed signal detector can be extended to soft-input soft-output detection easily. Based on numerical results, the model-driven DL based JCESD scheme significantly improves the performance of the corresponding traditional iterative detector and the signal detector exhibits superior robustness to signal-to-noise ratio (SNR) and channel correlation mismatches. Recently, it has been applied in physical layer communications [10]-[12], such as channel estimation [13]-[15], CSI feedback [16], signal detection [17]-[25], and channel coding [26], [27]. In particular, a five-layer fully connected deep neural network (DNN) is embedded into an orthogonal frequency-division multiplexing (OFDM) system for joint channel estimation and signal detection (JCESD) by treating the receiver as a black box and without exploiting domain knowledge [17]. However, training such a black-box-based network requires a lot of 1 A matrix A = UΣV is unitarily-invariant if U, Σ and V are mutually independent, and U, V are Haar-distributed. The independent and identically distributed (i.i.d.) Gaussian matrix is a typical unitarily-invariant matrix.
Hybrid analog-digital precoding architectures and low-resolution analog-to-digital converter (ADC) receivers are two solutions to reduce hardware cost and power consumption for millimeter wave (mmWave) multiple-input multiple-output (MIMO) communication systems with large antenna arrays. In this study, we consider a mmWave MIMO-OFDM receiver with a generalized hybrid architecture in which a small number of radio-frequency (RF) chains and low-resolution ADCs are employed simultaneously. Owing to the strong nonlinearity introduced by low-resolution ADCs, the task of data detection is challenging, particularly achieving a Bayesian optimal data detector. This study aims to fill this gap. By using generalized expectation consistent signal recovery technique, we propose a computationally efficient data detection algorithm that provides a minimum mean-square error estimate on data symbols and is extended to a mixed-ADC architecture. Considering particular structure of MIMO-OFDM channel matirx, we provide a lowcomplexity realization in which only FFT operation and matrixvector multiplications are required. Furthermore, we present an analytical framework to study the theoretical performance of the detector in the large-system limit, which can precisely evaluate the performance expressions such as mean-square error and symbol error rate. Based on this optimal detector, the potential of adding a few low-resolution RF chains and high-resolution ADCs for mixed-ADC architecture is investigated. Simulation results confirm the accuracy of our theoretical analysis and can be used for system design rapidly. The results reveal that adding a few low-resolution RF chains to original unquantized systems can obtain significant gains.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.