In this study, we have identified and partially characterized a mouse T-lymphoma ryanodine receptor on a unique type of internal vesicle which bands at the relatively light density of 1.07 g/ml. Analysis of the binding of [3H]ryanodine to these internal vesicles reveals the presence of a single, low affinity binding site with a dissociation constant (Kd) of 200 nM. The second messenger, cyclic ADP-ribose, was found to increase the binding affinity of [3H]ryanodine to its vesicle receptor at least 5-fold (Kd approximately 40 nM). In addition, cADP-ribose appears to be a potent activator of internal Ca2+ release in T-lymphoma cells and is capable of overriding ryanodine-mediated inhibition of internal Ca2+ release. Immunoblot analyses using a monoclonal mouse antiryanodine receptor antibody indicate that mouse T-lymphoma cells contain a 500-kDa polypeptide similar to the ryanodine receptor found in skeletal muscle, cardiac muscle, and brain tissues. Double immunofluorescence staining and laser confocal microscopic analysis show that the ryanodine receptor is preferentially accumulated underneath surface receptor-capped structures. T-lymphoma ryanodine receptor was isolated (with an apparent sedimentation coefficient of 30 S) by extraction of the light density vesicles with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonic acid (CHAPS) in 1 M NaCl followed by sucrose gradient centrifugation. Further analysis indicates that specific, high affinity binding occurs between ankyrin and this 30 S lymphoma ryanodine receptor (Kd = 0.075 nM). Most importantly, the binding of ankyrin to the light density vesicles significantly blocks ryanodine binding and ryanodine-mediated inhibition of internal Ca2+ release. These findings suggest that the cytoskeleton plays a pivotal role in the regulation of ryanodine receptor-mediated internal Ca2+ release during lymphocyte activation.
In this study we have used several complementary techniques to explore the interaction between the membrane linker molecule, ankyrin, and the inositol 1,4,5-trisphosphate (IP3) receptor in mouse T-lymphoma cells. Using double immunolabeling and laser confocal microscopy, we have found that both cytoplasmic IP3 receptor and ankyrin are preferentially accumulated within ligand-induced lymphocyte receptor-capped structures. The binding between ankyrin and IP3 receptor appears to be very specific. Further analyses indicate that the amino acid sequence GGVGDVLRKPS in the IP3 receptor shares a great deal of structural homology with the ankyrin-binding domain located in certain well characterized ankyrin-binding proteins such as the cell adhesion molecule, CD44. Biochemical studies using competition binding assays and a synthetic peptide identical to GGVGDVLRKPS (a sequence detected in rat brain IP3 receptor (amino acids 2548-2558) and mouse brain IP3 receptor (amino acids 2546-2556)) indicate that this 11-amino acid peptide binds specifically to ankyrin (but not fodrin or spectrin). Furthermore, this peptide competes effectively for ankyrin binding to IP3 receptor-containing vesicles and/or purified IP3 receptor, and it blocks ankyrin-induced inhibitory effects on IP3 binding and IP3-mediated internal Ca2+ release in mouse T-lymphoma cells. These findings suggest that this amino acid sequence, GGVGDVLRKPS, which is located close to the C terminus of the IP3 receptor, resides on the cytoplasmic side (not the luminal side) of IP3 receptor-containing vesicles. This unique region appears to be an important part of the IP3 receptor ankyrin-binding domain and may play an important role in the regulation of IP3 receptor-mediated internal Ca2+ release during lymphocyte activation.
In this study we have used saponin to permeabilize platelet membranes in order to test directly the involvement of IP3 in regulating internal Ca2+ release, and to measure IP3 binding to its receptor. Our results indicate that platelet vesicles release Ca2+ as early as 3 seconds after IP3 addition. Using [3H]IP3, we have found that platelets contain a single class of high affinity IP3 binding sites with a Kd of approximately 0.20 (+/- 0.01) nM. Immuno-blotting shows that platelets contain a 260 kDa polypeptide which shares immunological cross reactivity with brain IP3 receptor. Immunofluorescence staining data indicate that the IP3 receptor is preferentially located at the periphery of the platelet plasma membrane. Most importantly, both IP3 binding and IP3-induced Ca2+ release activities are significantly inhibited by cytochalasin D (a microfilament inhibitor) and colchicine (a microtubule inhibitor). These findings suggest that the cytoskeleton is involved in the regulation of IP3 binding and IP3 receptor-mediated Ca2+ release during platelet activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.