Radio Frequency Identification (RFID) technology has been widely used in many application domains. How to apply RFID technology to develop an Indoor Positioning System (IPS) has become a hot research topic in recent years. LANDMARC approach is one of the first IPSs by using active RFID tags and readers to provide location based service in indoor environment. However, major drawbacks of the LANDMARC approach are that its localization accuracy largely depends on the density of reference tags and the high cost of RFID readers. In order to overcome these drawbacks, two localization algorithms, namely weighted path loss (WPL) and extreme learning machine (ELM), are proposed in this paper. These two approaches are tested on a novel cost-efficient active RFID IPS. Based on our experimental results, both WPL and ELM can provide higher localization accuracy and robustness than existing ones.
In recent years, developing Indoor Positioning System (IPS) has become an attractive research topic due to the increasing demands on Location-Based Service (LBS) in indoor environment. Several advantages of Radio Frequency Identification (RFID) Technology, such as anti-interference, small, light and portable size of RFID tags, and its unique identification of different objects, make it superior to other wireless communication technologies for indoor positioning. However, certain drawbacks of existing RFID-based IPSs, such as high cost of RFID readers and active tags, as well as heavy dependence on the density of reference tags to provide the LBS, largely limit the application of RFID-based IPS. In order to overcome these drawbacks, we develop a cost-efficient RFID-based IPS by using cheaper active RFID tags and sensors. Furthermore, we also proposed three localization algorithms: Weighted Path Loss (WPL), Extreme Learning Machine (ELM) and integrated WPL-ELM. WPL is a centralized model-based approach which does not require any reference tags and provides accurate location estimation of the target effectively. ELM is a machine learning fingerprinting-based localization algorithm which can provide higher localization accuracy than other existing fingerprinting-based approaches. The integrated WPL-ELM approach combines the fast estimation of WPL and the high localization accuracy of ELM. Based on the experimental results, this integrated approach provides a higher localization efficiency and accuracy than existing approaches, e.g., the LANDMARC approach and the support vector machine for regression (SVR) approach.
In recent years, applying RFID technology to develop an Indoor Positioning System (IPS) has become a hot research topic. The most prominent advantage of active RFID IPS comes from its unique identification of different objects in indoor environment. However, certain drawbacks of existing RFID IPSs, such as high cost of RFID readers and active tags, as well as heavy dependence on the density of reference tags to provide the location based service, largely limit the applications of active RFID IPS. In order to overcome these drawbacks, we develop a cost-efficient RFID IPS by using cheaper active RFID tags, sensors and reader. In addition, one localization algorithm: integrated Weighted Path Loss (WPL) -Extreme Learning Machine (ELM) which combines the fast estimation of WPL and the high localization accuracy of ELM is proposed. According to the algorithm, an indoor environment is divided into small zones firstly and an ELM model is developed for each zone during the offline phase. During the online phase, the WPL approach is used to determine the zone of the target primarily, then the ELM model of that zone is deployed to provide the final estimated location of the target. Based on our experimental result, this integrated algorithm provides a higher localization efficiency and accuracy than existing approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.