Purpose Osteoarthritis (OA) is a common joint disease characterized by cartilage degeneration, synovial inflammation, osteophytes, and subchondral osteosclerosis. This study investigated the effects of resveratrol (RES) on extracellular matrix (ECM), autophagy, and apoptosis in OA pathogenesis via the SIRT1/FOXO1 pathway. Methods The microenvironment of OA chondrocytes was stimulated in vitro by adding 10 ng/mL of IL-1β to primary Wistar rat chondrocyte. Western blotting, immunofluorescence, quantitative real-time PCR, and transmission electron microscopy (TEM) were used for analysis. Results In the presence of IL-1β, RES increased the expression of silent information regulator (SIR) 1 protein and the phosphorylation level of forkhead transcription factor (FOXO) 1. It also promoted chondrocyte autophagy, increased the expression of SOX9 and aggrecan, inhibited chondrocyte apoptosis and matrix breakdown, and protected chondrocytes from IL-1β damage. After a SIRT1 inhibitor or FOXO1 inhibitor was added, the protective effect of RES on chondrocytes was significantly weakened. Our results suggest that RES regulates the ECM metabolism, autophagy, and apoptosis of OA chondrocytes through the SIRT1/FOXO1 pathway to ameliorate IL-1β-induced chondrocyte injury. Conclusion RES protects chondrocytes from IL-1β-induced damage by activating SIRT1/FOXO1 signaling and holds potential in OA treatment.
Osteoarthritis (OA) is considered a metabolic disorder. This study investigated the effect of resveratrol (RES) on cholesterol accumulation in osteoarthritic articular cartilage via the silent information regulator 1 (SIRT1)/forkhead transcription factor (FoxO1) pathway. Interleukin (IL)-1β-treated chondrocytes that mimic OA chondrocytes were used in in vitro experiments. The optimal RES concentration was selected based on the results of chondrocyte proliferation in the Cell Counting Kit-8 assay. Western blotting, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction were performed. For the animal experiments, mice were randomly divided into the RES group ( n = 15 ), medial meniscus destabilization group ( n = 15 ), and sham group ( n = 15 ), and each group received the same dose of RES or saline. Articular cartilage tissue was obtained eight weeks after surgery for relevant histological analysis. Clinical tissue test results suggest that downregulation of the SIRT1/FoxO1 pathway is associated with cholesterol buildup in OA chondrocytes. For the in vitro studies, RES increased the expression of SIRT1 and phosphorylation of FoxO1 in IL-1β-treated chondrocytes, promoted the expression of cholesterol efflux factor liver X receptor alpha (LXRα), and inhibited the expression of cholesterol synthesis-associated factor sterol-regulatory element binding proteins 2 (SREBP2). This reduced IL-1β-induced chondrocytes cholesterol accumulation. SIRT1 inhibition prevented the RES-mediated reduction in cholesterol buildup. Inhibiting FoxO1 but not SIRT1 reduced FoxO1 phosphorylation and increased cholesterol buildup in cultured chondrocytes. Additionally, in vivo experiments have shown that RES can alleviate cholesterol buildup and pathological changes in OA cartilage. Our findings suggest that RES regulates cholesterol buildup in osteoarthritic articular cartilage via the SIRT1/FoxO1 pathway, thereby improving the progression of OA.
Osteoarthritis (OA) is considered a metabolic disorder. This study investigated the effect of resveratrol (RES) on cholesterol accumulation in osteoarthritic articular cartilage via the SIRT1/FoxO1 pathway. Interleukin (IL)-1β-treated chondrocytes that mimic OA chondrocytes were used in in vitro experiments. The optimal RES concentration was selected based on the results of chondrocyte proliferation in the Cell Counting Kit-8 assay. Western blotting, immunofluorescence, and reverse transcription-quantitative polymerase chain reaction were performed. For the animal experiments, rats were randomly divided into the RES group (n = 15), medial meniscus destabilization group (n = 15), and Sham group (n = 15), and each group received the same dose of RES or saline. Articular cartilage tissue was obtained eight weeks after surgery for relevant histological analysis. Clinical tissue test results suggest that downregulation of the SIRT1/FoxO1 pathway is associated with cholesterol buildup in OA chondrocytes. For the in vitro studies, RES increased SIRT1 expression and FoxO1 phosphorylation in IL-1β-treated chondrocytes, promoted the expression of cholesterol efflux factors (LXRα, ABCA1, and ApoA1), and inhibited the expression of cholesterol synthesis-related factors (SREBP-2and HMGCR). This reduced IL-1β-induced chondrocytes cholesterol accumulation. SIRT1 inhibition prevented the RES-mediated reduction in cholesterol buildup. Inhibiting FoxO1 but not SIRT1reduced FoxO1 phosphorylation and increased cholesterol buildup in cultured chondrocytes. Additionally, in vivo experiments have shown that RES can alleviate cholesterol buildup and pathological changes in OA cartilage. Our findings suggest that RES regulates cholesterol buildup in osteoarthritic articular cartilage via the SIRT1/FoxO1 pathway, thereby improving the progression of OA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.