The exclusive location of compatibilizers at the interface of immiscible binary polymer blends to bridge the neighboring phases is the most important issue for fabricating desirable materials with synergistic properties. However, the positional stability of the compatibilizers at the interface remains a challenge in both scientific and technical points of view due to the intrinsic flexibility of compatibilizer molecules against aggressive processing conditions. Herein, taking the typical immiscible poly vinylidene fluoride (PVDF)/polylactic acid (PLLA) blend as an example, we demonstrate a novel approach, termed as the interfacial nanoparticle compatibilization (IPC) mechanism, to overcome the challenges by packing nanoparticles thermodynamically at the interface through melt reactive blending. Specifically, we have first synthesized nanosilica with both reactive epoxide groups and long poly(methyl methacrylate) (PMMA) tails, called reactive PMMA-graft-SiO (Epoxy-MSiO), and then incorporated the Epoxy-MSiO into the PVDF/PLLA (50/50, w/w) blends by melt blending. PLLA was in situ grafted onto SiO by the reaction of the carboxylic acid groups with epoxide groups on the surface of SiO. Therefore, the reacted SiO particles were exclusively located at the interface by the formation of the Janus-faced silica hybrid nanoparticles (JSNp) with pregrafted PMMA tails entangled with PVDF molecular chains in the PVDF phase and the in situ grafted PLLA chains embedded in the PLLA phase. Such JSNp with a distinct hemisphere, functioning as compatibilizer, can not only suppress coalescence of PVDF domains by its steric repulsion but also enhance interfacial adhesion via the selective interactions with the corresponding miscible phase. The interfacial location of JSNp is very stable even under the severe shear field and annealing in the melt. This IPC mechanism paves a new possibility to use the various types of nanoparticles as both effective compatibilizers and functional fillers for immiscible polymer blends.
The poly(L-lactic acid)/poly(oxymethylene) (PLLA/POM) blends have been prepared by simply melt blending. The phase diagram, miscibility, glass transition temperatures, and physical properties have been investigated systematically. The PLLA/POM blends exhibit typical lower critical solution temperature (LCST) behaviors. PLLA and POM are miscible in the melt state at low temperature and become phase-separated at elevated temperatures. It was found that the weak interactions between the carboxyl groups of PLLA and methylene groups of POM (weak C−H ... O hydrogen bonding) account for the miscibility of the two components. Although the PLLA/POM blends are homogeneous at the melt state in the miscible temperature region, two distinct glass transition temperatures are observed for the all blends when quenched from the homogeneous state. More surprisingly, both POM and PLLA exhibit the apparent glass transition temperature (T g ) depression in the blends, compared with T g s of the neat polymers. The behaviors are totally different from other reported miscible or partially miscible polymer blends, in which T g s shift to each other or merge into one glass transition temperature. The investigation indicates that the crystallization of POM in the blend induces the phase separation of PLLA/POM blends and forms novel morphologies with the interpenetrated (cocontinuous) PLLA and POM phases. The double glass transition temperature depression of both PLLA and POM in the blends originates from the mismatch thermal shrinkage during cooling down from the high temperature. Moreover, we observed the improved ductility of the PLLA/POM blends as compared with the neat PLLA and POM, which has been attributed to higher molecular mobility due to the glass transition temperature depression for both PLLA and POM in the blends.
Constructing stable co-continuous morphology of commercial immiscible polymer blends remains an ongoing challenge in terms of complex presynthetic routes, multiple parameter dependency, and intrinsic instability of phase morphology. Herein, we demonstrate a full biodegradable polymer blend, poly(lactic acid) (PLA) and poly(butylene adipate-co-terephthalate), where hitherto inaccessible co-continuous with asymmetric compositions (70/30) can be obtained with the assistance of interfacial stereocomplex crystallites (i-SCs) through reactive blending. By taking full advantages of this unprecedented compatibilizer, nanostructured co-continuous blends with synergistically enhanced comprehensive performance are achieved. First, due to the “rigid” i-SC, co-continuous morphology is induced through a simple melt blending procedure; second, considerable augmentation of the crystallization rate of the PLA matrix is accomplished on account of the in situ formed nucleation agent (i.e., i-SC); third, a super toughened material with simultaneously enhanced tensile strength, ductility, and impact strength can be acquired, resulting from the i-SC-induced co-continuous morphology; and fourth, i-SC can function as a “rigid” supporting layer between phases even above 200 °C, resulting in significantly enhanced morphology stability in melt. The versatile, facile, and practical strategy offers an industrially relevant technique to fabricate super-robust and fully biobased polymer materials.
Exclusive localization of nanofillers at the interface of immiscible polymer blend has been confirmed to be effective in improving compatibility and facilitating the formation of nanofiller-network with very low percolation threshold, while the rheology of such nanofiller compatibilized blends has seldom been investigated. Herein, we present a systematic rheological study on nanosilica-compatibilized PVDF/PLLA (poly(vinylidene fluoride)/poly(l-lactide)) blends. The linear viscoelastic properties of the systems are evaluated using small amplitude oscillatory shear (SAOS). It is found that the interfacial jammed Janus grafted silica (JGS) located at the interface increases dynamic moduli at low frequency even with very low filler loadings. The nonterminal effects become more pronounced with increasing JGS loadings. Weighted relaxation spectra inferred from SAOS reveals that the shape relaxation of PVDF-droplets is strongly influenced by addition of JGS. The solid-like behavior of JGS-filled blends has been attributed to both the orderly arrangement of JGS at PVDF–PLLA interface and the molecular entanglement between the grafted long tails of JGS with the molecular chains of the component polymers. In other words, JGS at the interface not only promotes strong interfacial interactions between phases, but also stimulates the formation of unique nanoparticle–polymer hybrid network, termed as “heterogeneous network” with the silica as the junctions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.