[1] A grain-based Universal Distinct Element Code model was developed to generate a deformable polygonal grain-like structure to simulate the microstructure of brittle rock. It takes into account grain-scale heterogeneity including microgeometric heterogeneity, grain-scale elastic heterogeneity, and microcontact heterogeneity. The microgeometric heterogeneity can be used to match the grain size distribution of the rock. The discrete element approach is able to simulate the microheterogeneity caused by elastic variation and contact stiffness anisotropy. The modeling approach was evaluated using Lac du Bonnet granite and Ä spö Diorite. The microheterogeneity played an important role in controlling both the micromechanical behavior and the macroscopic response when subjected to uniaxial compression loading. The crack-initiation stress was found to be controlled primarily by the microscale geometric heterogeneity, while the microcontact heterogeneity controlled the strength characteristics. The effect of heterogeneity on the distribution and evolution of tensile stresses and associated extension cracks was also examined.Citation: Lan, H., C. D. Martin, and B. Hu (2010), Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.