We disclose a Ni-catalyzed reductive arylcyanation of alkene using environmentally benign and nontoxic organo cyanating reagent N-cyano-N-phenyl-p-toluenesulfonamide. This reaction provides a new method for the rapid synthesis of cyanosubstituted oxindoles and isoquinoline-1,3-diones and features high functional group tolerance. In addition, an enantioselective version was developed for the construction of enantiomerically enriched 3-cyanomethyl oxindole. This method has also been applied to the synthesis of natural alkaloids (+)-esermethole and (+)-physostigmine.
The reactivity of metal-hydride complexes can be harnessed by the modification of ancillary ligands. With the aim of improving the hydride-donor ability of the key MnÀ H intermediate and reducing steric hindrance, we herein report the rational design of a versatile and efficient NHC-based NNC-pincer Mn catalyst for hydrogenation reactions. This newly developed catalyst exhibited higher activity than the corresponding NNP-pincer Mn catalyst owing to its reduced steric hindrance and enhanced MnÀ H σ-bonding orbital energy level through a π-antibonding interaction. Using this highly active NNC-pincer Mn catalyst, a rich array of polar unsaturated compounds (> 80 examples) including esters, N-heteroarenes, amides, carbonates, and urea derivatives, were successfully hydrogenated under relatively mild conditions. This work represents a rare example of a general phosphine-free Mn-catalyzed hydrogenation system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.