Haiyang-2D (HY-2D) is the fourth satellite in the marine dynamic satellite series established by China. It was successfully launched on 19 May 2021, marking the era of the 3-satellite network in the marine dynamic environment satellite series of China. The satellite’s precision orbit determination (POD) and validations are of great significance for ocean warning and marine altimetry missions. HY-2D is equipped with a laser reflector array (LRA), a satellite-borne Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) receiver, and a satellite-borne dual-frequency GPS receiver named HY2 that was independently developed in China. In this paper, the quality of GPS data collected by the HY2 is analyzed based on indicators such as the multipath effect, cycle slips, and data completeness. The results suggest that the receiver can be used in POD missions involving low-Earth-orbit (LEO) satellites. The precise orbits of HY-2D are determined by the reduced-dynamics (RD) method. Apart from POD, validation of orbit accuracy is another important task for LEO POD. Therefore, two external validation methods are proposed, including carrier differential validation using one GPS satellite and inter-satellite differential validation using two GPS satellites. These are based on space-borne carrier-phase data, and the GPS satellites used for POD validation do not participate in orbit determination. The results of SLR range validation cannot illustrate the orbit accuracy in x, y, and z directions particularly, so to make validation results more intuitive, the SLR three-dimensional (3D) validation is proposed based on SLR range validation, and the RMSs in x, y, and z directions are 2.66, 3.32, and 2.69 cm, respectively. The results of SLR 3D validation are the same as those of SLR range validation, which proves that the new external validation method provided by SLR 3D is reliable. The RMSs of carrier differential validation and inter-satellite differential validation are 0.68 and 1.06 cm, respectively. The proposed validation methods are proved to be reliable.
Haiyang-2C (HY-2C) is a dynamic, marine-monitoring satellite that was launched by China and is equipped with an onboard dual-frequency GPS receiver named HY2_Receiver, which was independently developed in China. HY-2C was successfully launched on 21 September 2020. Its precise orbit is an important factor for scientific research applications, especially for marine altimetry missions. The performance of the HY2_Receiver is assessed based on indicators such as the multipath effect, ionospheric delay, cycle slip and data utilization, and assessments have suggested that the receiver can be used in precise orbit determination (POD) missions involving low-Earth-orbit (LEO) satellites. In this study, satellite-borne GPS data are used for POD with a reduced-dynamic (RD) method. Phase centre offset (PCO) and phase centre variation (PCV) models of the GPS antenna are established during POD, and their influence on the accuracy of orbit determination is analysed. After using the PCO and PCV models in POD, the root mean square (RMS) of the carrier-phase residuals is around 0.008 m and the orbit overlap validation accuracy in each direction reaches approximately 0.01 m. Compared with the precise science orbit (PSO) provided by the Centre National d’Etudes Spatiales (CNES), the RD orbit accuracy of HY-2C in the radial (R) direction reaches 0.01 m. The accuracy of satellite laser ranging (SLR) range validation is better than 0.03 m. Additionally, a new method is proposed to verify the accuracy of the RD orbit of HY-2C by using space-borne Doppler orbitography and radiopositioning integrated by satellite (DORIS) data directly. DORIS data are directly compared to the result calculated using the accurate coordinates of beacons and the RD orbit, and the results indicate that the external validation of HY-2C RD orbit has a range rate accuracy of within 0.0063 m/s.
As the first in-orbit formation satellites equipped with a Laser Ranging Interferometer (LRI) instrument, Gravity Recovery and Climate Experiment Follow-on (GRACE-FO) satellites are designed to evaluate the effective ability of the new LRI ranging system applied to satellite-to-satellite tracking. To evaluate the application of LRI in GRACE-FO, a relative kinematic orbit determination scheme for formation satellites integrating Kalman filters and GPS/LRI is proposed. The observation equation is constructed by combining LRI and spaceborne GPS data, and the intersatellite baselines of GRACE-FO formation satellites are calculated with Kalman filters. The combination of GPS and LRI techniques can limit the influence of GPS observation errors and improve the stability of orbit determination of the GRACE-FO satellites formation. The linearization of the GPS/LRI observation model and the process of the GPS/LRI relative kinematic orbit determination are provided. Relative kinematic orbit determination is verified by actual GPS/LRI data of GRACE-FO-A and GRACE-FO-B satellites. The quality of relative kinematic orbit determination is evaluated by reference orbit check and K-Band Ranging (KBR) check. The result of the reference orbit check indicates that the accuracy of GRACE-FO relative kinematic orbit determination along X, Y, and Z (components of the baseline vector) directions is` better than 2.9 cm. Compared with the relative kinematic orbit determination by GPS only, GPS/LRI improves the accuracy of the relative kinematic orbit determination by approximately 1cm along with X, Y and Z directions, and by about 1.8 cm in 3D directions. The overall accuracy of relative kinematic orbit determination is improved by 25.9%. The result of the KBR check indicates that the accuracy of the intersatellite baseline determination is about +/−10.7 mm.
As a new type of altimeter, interferometric radar altimeter (InRA) has significant potential in marine gravity field recovery due to its high spatial resolution. However, errors in environmental correction on gravity field recovery using InRA observations are unclear. In this study, four kinds of these errors, including wet and dry troposphere, ionosphere, and sea state bias (SSB) correction errors, are simulated. The impact of these errors on gravity field recovery are analyzed and discussed. The results show that, among the four types of errors in environmental correction, the wet troposphere and SSB have a more significant impact on the accuracy of sea surface height computing, and the wet troposphere has the most significant impact on the accuracy of gravity field recovery. The maximum error of gravity anomaly caused by the wet troposphere residual errors is nearly 2 mGal, and the relative error of the recovered gravity anomaly is around 6.42%. We can also find that SSB has a little more significant impact than dry troposphere and ionosphere, where dry troposphere and ionosphere have an almost identical impact, on DV and GA inversion accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.