The quality of water in a dental unit is of considerable importance because patients and dental staff are regularly exposed to water and aerosol generated from the dental unit. The aim of this study was to evaluate the occurrence of microbial contamination in dental unit waterlines. Water samples were collected aseptically from the waterlines (reservoir, triple-syringe, high-speed) of 15 dental units. After serial dilution to 1:10(6) in APHA, the samples were seeded by the pour-plate technique and cultured in plate count agar (Difco) for 48 h at 32 degrees C. Analysis was based on the number of colony forming units (CFU). The Wilcoxon non-parametric test indicated that the levels of water contamination were highest in the triple-syringe (13 of 15) and in the high-speed (11 of 15); both levels were higher than those of the water reservoir. There was no significant statistical difference between the level of contamination in the triple-syringe and the high-speed as determined by the Mann-Whitney test [p(H0) = 40.98%; Z = - 0.2281]. Because biofilm forms on solid surfaces constantly bathed by liquid where microorganisms are present, these results indicate that the water in the dental unit may be contaminated by biofilm that forms in these tubules.
The antimicrobial activity of Grossman's sealer and its components was evaluated on 13 different strains using the double layer well-diffusion method. Results revealed that Grossman's sealer presented antimicrobial activity against all the tested strains. Among the components of the cement, sodium tetraborate presented the greatest antimicrobial activity, both in type and diameter of the halo and ring of inhibition. Sealer powder, rosin, and eugenol presented similar activity, with no effect on P. aeruginosa and C. albicans. Among these, only eugenol had an effect on E. coli. Zinc oxide was only active against S. sobrinus and E. coli. Barium sulfate and bismuth subcarbonate did not show any antimicrobial effect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.