This study presents a review of the current state of research on teaching quantum mechanics in secondary and lower undergraduate education. A conceptual approach to quantum mechanics is being implemented in more and more introductory physics courses around the world. Because of the differences between the conceptual nature of quantum mechanics and classical physics, research on misconceptions, testing, and teaching strategies for introductory quantum mechanics is needed. For this review, 74 articles were selected and analyzed for the misconceptions, research tools, teaching strategies, and multimedia applications investigated. Outcomes were categorized according to their contribution to the various subtopics of quantum mechanics. Analysis shows that students have difficulty relating quantum physics to physical reality. It also shows that the teaching of complex quantum behavior, such as time dependence, superposition, and the measurement problem, has barely been investigated for the secondary and lower undergraduate level. At the secondary school level, this article shows a need to investigate student difficulties concerning wave functions and potential wells. Investigation of research tools shows the necessity for the development of assessment tools for secondary and lower undergraduate education, which cover all major topics and are suitable for statistical analysis. Furthermore, this article shows the existence of very diverse ideas concerning teaching strategies for quantum mechanics and a lack of research into which strategies promote understanding. This article underlines the need for more empirical research into student difficulties, teaching strategies, activities, and research tools intended for a conceptual approach for quantum mechanics.
This article describes a Delphi study aiming to investigate which quantum mechanics topics experts consider to be important to teach at the secondary level, and what arguments these experts give. A series of three questionnaires was administered to experts in the fields of quantum physics, mathematics, chemistry and biophysics (n = 17, 12, 11 for the first, second, and third questionnaires, respectively; the number of participants changed due to attrition). Several experts from this group (n = 9) were also interviewed. Results show that there is consensus on the topics considered to be important, i.e. duality, wave functions and atoms. Experts mainly based their topic ranking on relations between concepts, and on what quantum mechanics topics they consider to be fundamental. The topics that were considered less important were often described as too difficult or too complex.
ARTICLE HISTORY
The main goal of most physics textbooks is to develop declarative and procedural knowledge. Exercises provide pupils with opportunities to apply this knowledge. However, when confronted with more complicated exercises many pupils experience difficulties in solving them. A computer program about the subject of forces was developed containing hints for the various different episodes of problem-solving. A study was undertaken with a group taking part in the experiment (n = 11) who used both their textbook and the computer program, and a control group (n = 25) who used their textbook only.There was evidence to show that the pupils from the group taking part in the experiment did achieve higher results in solving problems. Exploration and planning were improved but evaluation was not. It appeared that pupils involved in the experiment made better use of their declarative knowledge in solving problems than pupils from the control group.
Many students experience difficulties in solving applied physics problems. Most programs that want students to improve problem-solving skills are concerned with the development of content knowledge. Physhint is an example of a student-controlled computer program that supports students in developing their strategic knowledge in combination with support at the level of content knowledge. The program allows students to ask for hints related to the episodes involved in solving a problem. The main question to be answered in this article is whether the program succeeds in improving strategic knowledge by allowing for more effective practice time for the student (practice effect) and/or by focusing on the systematic use of the available help (systematic hint-use effect). Analysis of qualitative data from an experimental study conducted previously show that both the expected effectiveness of practice and the systematic use of episode-related hints account for the enhanced problem-solving skills of students.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.