In the present study, the distribution of dopamine (DA) was identified light microscopically in all segments of the rat, cat, and monkey spinal cord by using immunocytochemistry with antibodies directed against dopamine. Only fibers and (presumed) terminals were found to be immunoreactive for DA. Strongest DA labeling was present in the sympathetic intermediolateral cell column (IML). Strong DA labeling, consisting of many varicose fibers, was found in all laminae of the dorsal horn, including the central canal area (region X), but with the exception of the substantia gelatinosa, which was only sparsely labeled, especially in rat and monkey. In the motoneuronal cell groups DA labeling was also strong and showed a fine granular appearance. The sexually dimorphic cremaster nucleus and Onuf's nucleus (or its homologue) showed a much stronger labeling than the surrounding somatic motoneurons. In the parasympathetic area at sacral levels, labeling was moderate. The remaining areas, like the intermediate zone (laminae VI-VIII), were only sparsely innervated. The dorsal nucleus (column of Clarke) showed the fewest DA fibers, as did the central cervical nucleus, suggesting that cerebellar projecting cells were avoided by the DA projection. In all species, the descending fibers were located mostly in the dorsolateral funiculus, but laminae I and III also contained many rostrocaudally oriented fibers. It is concluded that DA is widely distributed within the spinal cord, with few differences between species, emphasizing that DA plays an important role as one of the monoamines that influences sensory input as well as autonomic and motor output at the spinal level.
In the present study the distribution of dopamine D2 receptors in rat spinal cord was determined by means of immunocytochemistry using an anti-peptide antibody, directed against the putative third intracellular loop of the D2 receptor and in situ hybridization (ISH) using a [35S]UTP labelled anti-sense riboprobe. With the immunocytochemical technique, labelling was confined to neuronal cell bodies and their proximal dendrites. Strongest labelling was present in the parasympathetic area of the sacral cord and in two sexually dimorphic motor nuclei of the lumbosacral cord, the spinal nucleus of the bulbocavernosus and the dorsolateral nucleus. Moderately labelled cells were present in the intermediolateral cell column, the area around the central canal and lamina I of the dorsal horn. Weak labelling was present in the lateral spinal nucleus and laminae VII and VIII of the ventral horn. Except for the two sexually dimorphic motornuclei of the lumbosacral cord labelled motoneurons were not encountered. With the ISH technique radioactive labelling was present in many neurons, indicating that they contained D2 receptor mRNA. The distribution of these neurons was very similar to the distribution obtained with immunocytochemistry, but with ISH additional labelled cells were detected in laminae III and IV of the dorsal horn, which were never labelled with immunocytochemistry. The present study shows that the D2 receptor is expressed in specific areas of the rat spinal cord. This distribution provides anatomical support for the involvement of D2 receptors in modulating nociceptive transmission and autonomic control. Our data further indicate that D2 receptors are not directly involved in modulating motor functions with the exception, possibly, of some sexual motor functions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.