The insult leading to autoantibody development in children who will progress to develop type 1 diabetes (T1D) has remained elusive. To investigate the genes and molecular pathways in the pathogenesis of this disease, we performed genome-wide transcriptomics analysis on a unique series of prospective whole-blood RNA samples from at-risk children collected in the Finnish Type 1 Diabetes Prediction and Prevention study. We studied 28 autoantibody-positive children, out of which 22 progressed to clinical disease. Collectively, the samples covered the time span from before the development of autoantibodies (seroconversion) through the diagnosis of diabetes. Healthy control subjects matched for date and place of birth, sex, and HLA-DQB1 susceptibility were selected for each case. Additionally, we genotyped the study subjects with Immunochip to identify potential genetic variants associated with the observed transcriptional signatures. Genes and pathways related to innate immunity functions, such as the type 1 interferon (IFN) response, were active, and IFN response factors were identified as central mediators of the IFN-related transcriptional changes. Importantly, this signature was detected already before the T1D-associated autoantibodies were detected. Together, these data provide a unique resource for new hypotheses explaining T1D biology.
Upregulation of IL-17 immunity and detrimental effects of IL-17 on human islets have been implicated in human type 1 diabetes. In animal models, the plasticity of Th1/Th17 cells contributes to the development of autoimmune diabetes. In this study, we demonstrate that the upregulation of the IL-17 pathway and Th1/Th17 plasticity in peripheral blood are markers of advanced β cell autoimmunity and impaired β cell function in human type 1 diabetes. Activated Th17 immunity was observed in the late stage of preclinical diabetes in children with β cell autoimmunity and impaired glucose tolerance, but not in children with early β cell autoimmunity. We found an increased ratio of IFN-γ/IL-17 expression in Th17 cells in children with advanced β cell autoimmunity, which correlated with HbA1c and plasma glucose concentrations in an oral glucose tolerance test, and thus impaired β cell function. Low expression of Helios was seen in Th17 cells, suggesting that Th1/Th17 cells are not converted thymus-derived regulatory T cells. Our results suggest that the development of Th1/Th17 plasticity may serve as a biomarker of disease progression from β cell autoantibody positivity to type 1 diabetes. These data in human type 1 diabetes emphasize the role of Th1/Th17 plasticity as a potential contributor to tissue destruction in autoimmune conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.