We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
Mapping DNase I hypersensitive (HS) sites is an accurate method of identifying the location of genetic regulatory elements, including promoters, enhancers, silencers, insulators, and locus control regions. We employed high-throughput sequencing and whole-genome tiled array strategies to identify DNase I HS sites within human primary CD4+ T cells. Combining these two technologies, we have created a comprehensive and accurate genome-wide open chromatin map. Surprisingly, only 16%-21% of the identified 94,925 DNase I HS sites are found in promoters or first exons of known genes, but nearly half of the most open sites are in these regions. In conjunction with expression, motif, and chromatin immunoprecipitation data, we find evidence of cell-type-specific characteristics, including the ability to identify transcription start sites and locations of different chromatin marks utilized in these cells. In addition, and unexpectedly, our analyses have uncovered detailed features of nucleosome structure.
Little is known about the regulation of neuronal and other cell-type specific epigenomes from the brain. Here, we map the genomewide distribution of trimethylated histone H3K4 (H3K4me3), a mark associated with transcriptional regulation, in neuronal and nonneuronal nuclei collected from prefrontal cortex (PFC) of 11 individuals ranging in age from 0.5 to 69 years. Massively parallel sequencing identified 12,704 H3K4me3 enriched regions (peaks), the majority located proximal to (within 2 kb of) the transcription start site (TSS) of annotated genes. These included peaks shared by neurons in comparison with three control (lymphocyte) cell types, as well as peaks specific to individual subjects. We identified 6,213 genes that show highly enriched H3K4me3 in neurons versus control. At least 1,370 loci, including annotated genes and novel transcripts, were selectively tagged with H3K4me3 in neuronal but not in nonneuronal PFC chromatin. Our results reveal agecorrelated neuronal epigenome reorganization, including decreased H3K4me3 at approximately 600 genes (many function in developmental processes) during the first year after birth. In comparison, the epigenome of aging (>60 years) PFC neurons showed less extensive changes, including increased H3K4me3 at 100 genes. These findings demonstrate that H3K4me3 in human PFC is highly regulated in a cell type-and subject-specific manner and highlight the importance of early childhood for developmentally regulated chromatin remodeling in prefrontal neurons.D evelopmentally regulated changes in histone modifications and DNA methylation, shaping gene expression patterns and genome organization, are critical intermediates for numerous genetic and environmental factors affecting neuronal functions in healthy and diseased brains (1). For example, there is increasing evidence that epigenetic alterations in the cerebral cortex and hippocampus play an important role in the etiology of schizophrenia and other neurodevelopmental disease (2, 3). Cortical neurons permanently exit from the cell cycle during the fetal period, before the dramatic changes in functional connectivity, both on a micro-(e.g., synapse) and macroscale (e.g., network activity, cortical gray matter volumes), that extend into early childhood years and continue throughout adolescence and even beyond (4, 5). To date, however, comprehensive and genomewide maps of neuronal epigenomes, and their developmental trajectories, do not exist. This critical deficiency in epigenetic information, as it pertains to the human-and more generally animal-brain, finally can be addressed because recently it became possible to efficiently separate neuronal chromatin from other chromatin in tissue, thereby avoiding potential confounds such as the highly dynamic changes in glia cell densities during cortical ontogenesis and maturation (6). Here, we employ ChIP-Seq (7) to study the genome-wide distribution of histone H3K4 trimethylation (H3K4me3)-an epigenetic mark highly enriched at start sites of actual or potential transcription (8)-in n...
The cJun NH2-terminal kinase (JNK) stress signaling pathway is implicated in the metabolic response to the consumption of a high fat diet, including the development of obesity and insulin resistance. These metabolic adaptations involve altered liver function. Here we demonstrate that hepatic JNK potently represses the nuclear hormone receptor peroxisome proliferator-activated receptor α (PPARα). JNK therefore causes decreased expression of PPARα target genes that increase fatty acid oxidation / ketogenesis and promote the development of insulin resistance. We show that the PPARα target gene fibroblast growth factor 21 (Fgf21) plays a key role in this response because disruption of the hepatic PPARα - FGF21 hormone axis suppresses the metabolic effects of JNK-deficiency. This analysis identifies the hepatokine FGF21 as a critical mediator of JNK signaling in the liver.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.