This paper is focused on the aspects of limiting in residual distribution (RD) schemes for high-order finite element approximations to advection problems. Both continuous and discontinuous Galerkin methods are considered in this work. Discrete maximum principles are enforced using algebraic manipulations of element contributions to the global nonlinear system. The required modifications can be carried out without calculating the element matrices and assembling their global counterparts. The components of element vectors associated with the standard Galerkin discretization are manipulated directly using localized subcell weights to achieve optimal accuracy. Low-order nonlinear RD schemes of this kind were originally developed to calculate local extremum diminishing predictors for flux-corrected transport (FCT) algorithms. In the present paper, we incorporate limiters directly into the residual distribution procedure, which makes it applicable to stationary problems and leads to well-posed nonlinear discrete problems. To circumvent the second-order accuracy barrier, the correction factors of monolithic limiting
In this work, we introduce algebraic flux correction schemes for enriched (P 1 ⊕ P 0 and Q 1 ⊕ P 0 ) Galerkin discretizations of the linear advection equation. The piecewise-constant component stabilizes the continuous Galerkin approximation without introducing free parameters. However, violations of discrete maximum principles are possible in the neighborhood of discontinuities and steep fronts. To keep the cell averages and the degrees of freedom of the continuous P 1 /Q 1 component in the admissible range, we limit the fluxes and element contributions, the complete removal of which would correspond to first-order upwinding. The first limiting procedure that we consider in this paper is based on the flux-corrected transport (FCT) paradigm. It belongs to the family of predictor-corrector algorithms and requires the use of small time steps. The second limiting strategy is monolithic and produces nonlinear problems with well-defined residuals. This kind of limiting is well suited for stationary and time-dependent problems alike. The need for inverting consistent mass matrices in explicit strong stability preserving Runge-Kutta time integrators is avoided by reconstructing nodal time derivatives from cell averages. Numerical studies are performed for standard 2D test problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.