Various methods are used in the literature for predicting the lightest CP-even Higgs boson mass in the Minimal Supersymmetric Standard Model (MSSM). Fixed-order diagrammatic calculations capture all effects at a given order and yield accurate results for scales of supersymmetric (SUSY) particles that are not separated too much from the weak scale. Effective field theory calculations allow a resummation of large logarithmic contributions up to all orders and therefore yield accurate results for a high SUSY scale. A hybrid approach, where both methods have been combined, is implemented in the computer code FeynHiggs. So far, however, at large scales sizeable differences have been observed between FeynHiggs and other pure EFT codes. In this work, the various approaches are analytically compared with each other in a simple scenario in which all SUSY mass scales are chosen to be equal to each other. Three main sources are identified that account for the major part of the observed differences. Firstly, it is shown that the scheme conversion of the input parameters that is commonly used for the comparison of fixed-order results is not adequate for the comparison of results containing a series of higher-order logarithms. Secondly, the treatment of higher-order terms arising from the determination of the Higgs propagator pole is addressed. Thirdly, the effect of different parametrizations in particular of the top Yukawa coupling in the non-logarithmic terms is investigated. Taking into account all of these effects, in the considered simple scenario very good agreement is found for scales above 1 TeV between the results obtained using the EFT approach and the hybrid approach of FeynHiggs.a
In the Minimal Supersymmetric Standard Model heavy superparticles introduce large logarithms in the calculation of the lightest C P-even Higgs-boson mass. These logarithmic contributions can be resummed using effective field theory techniques. For light superparticles, however, fixed-order calculations are expected to be more accurate. To gain a precise prediction also for intermediate mass scales, the two approaches have to be combined. Here, we report on an improvement of this method in various steps: the inclusion of electroweak contributions, of separate electroweakino and gluino thresholds, as well as resummation at the NNLL level. These improvements can lead to significant numerical effects. In most cases, the lightest C P-even Higgs-boson mass is shifted downwards by about 1 GeV. This is mainly caused by higher-order corrections to the MS top-quark mass. We also describe the implementation of the new contributions in the code FeynHiggs.
We propose six new benchmark scenarios for Higgs boson searches in the Minimal Supersymmetric Standard Model. Our calculations follow the recommendations of the LHC Higgs Cross Section Working Group, and benefit from recent developments in the predictions for the Higgs-boson masses and mixing. All of the proposed scenarios are compatible with the most recent results from Run 2 of the LHC. In particular, they feature a scalar with mass and couplings compatible with those of the observed Higgs boson, and a significant portion of their parameter space is allowed by the limits from the searches for SUSY particles and additional Higgs bosons. We define a scenario where all SUSY particles are relatively heavy, and two scenarios with light colorless SUSY particles (charginos, neutralinos and, in one case, staus). In addition, we present two scenarios featuring alignment without decoupling, realized with either the lighter or the heavier scalar being SM-like, and a scenario with CP violation.
Precise predictions for Higgs boson masses in the Minimal SupersymmetricStandard Model can be obtained by combining fixed-order calculations with effective field theory (EFT) methods for the resummation of large logarithms in case of heavy superpartners. This hybrid approach is implemented in the computer code FeynHiggs and has been applied in previous studies for calculating the mass of the lightest CP-even Higgs boson for low, intermediate and high SUSY scales. In these works it was assumed that the non-standard Higgs bosons share a common mass scale with the supersymmetric squark particles, leaving the Standard Model as the low-energy EFT. In this article, we relax this restriction and report on the implemention of a Two-Higgs-Doublet Model (THDM) as effective theory below the SUSY scale into our hybrid approach. We explain in detail how our EFT calculation is consistently combined with the fixed-order calculation within the code FeynHiggs. In our numerical investigation we find effects on the mass of the lightest CP-even Higgs boson h of up to 9 GeV in scenarios with low M A , low tan β and high SUSY scales, when compared with previous versions of FeynHiggs. Comparisons to other publicly available pure EFT codes with a THDM show good agreement. Effects on the mass of the second lightest CP-even Higgs boson H are found to be negligible in the phenomenologically interesting parameter regions where H can be traded for h as the experimentally observed Higgs particle.
We present an overview of the status and recent developments of FeynHiggs (current version: 2.14.3) since version 2.12.2. The main purpose of FeynHiggs is the calculation of the Higgs-boson masses and other physical observables in the MSSM. For a precise prediction of the Higgs-boson masses for low and high SUSY scales, state-of-the-art fixed-order and effective-field-theory calculations are combined. We first discuss improvements of the fixed-order calculation, namely an optional DR renormalization of the stop sector and a renormalization of the Higgs sector ensuring the chosen input mass to be equivalent with the corresponding physical mass. Second, we describe improvements of the EFT calculation, i.e. an implementation of non-degenerate threshold corrections as well as an interpolation for complex parameters. Lastly, we highlight some improvements of the code structure easing future extensions of FeynHiggs to models beyond the MSSM.Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 1426 Does the new version supersede the previous version? Yes.Reasons for the new version: Improved calculations and code structure. Summary of revisions:Apart from improvements discussed in other publications: implementation of optional DR renormalization of stop sector, adapted two-loop Higgs sector renormalization, implementation of full non-degenerate threshold corrections, interpolation of EFT calculation for complex parameters, better code structure.Nature of problem: The Minimal Supersymmetric Standard Model (MSSM) allows predictions for the masses and mixings of the Higgs bosons in terms of a few relevant parameters. Therefore, comparisons to experimental data provide constraints on the parameter space. To fully profit from the experimental precision, a comparable level of precision is needed for the theoretical prediction.Solution method: State-of-the-art fixed-order and effective-field-theory calculations are combined to obtain a precise prediction for small as well as large supersymmetry scales.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.