Intracellular signaling pathways, which regulate the interactions of integrins with their ligands, affect a wide variety of biological functions. Here we provide evidence of how cytohesin-1, an integrin-binding protein and guanine-nucleotide exchange factor (GEF) for ARF GTPases, regulates cell adhesion. Mutational analyses of the b-2 cytoplasmic domain revealed that the adhesive function of LFA-1 depends on its interaction with cytohesin-1, unless the integrin is activated by exogenous divalent cations. Secondly, cytohesin-1 induces expression of an extracellular activation epitope of LFA-1, and the exchange factor function is not essential for this activity. In contrast, LFA-1-mediated cell adhesion and spreading on intercellular cell adhesion molecule 1 is strongly inhibited by a cytohesin-1 mutant, which fails to catalyze ARF GDP±GTP exchange in vitro. Thus, cytohesin-1 is involved in the activation of LFA-1, most probably through direct interaction with the integrin, and induces cell spreading by its ARF-GEF activity. We therefore propose that both direct regulation of the integrin and concomitant changes in the membrane topology of adherent T cells are modulated by dissectable functions of cytohesin-1. Keywords: ARF GTPase/cell adhesion/cytohesin-1/ b-2 integrin/LFA-1
The phosphorylation state of the putative signal transduction protein P(II) from the cyanobacterium Synechococcus sp. strain PCC 7942 depends on the cellular state of nitrogen and carbon assimilation. In this study, dephosphorylation of phosphorylated P(II) protein (P[II]-P) was investigated both in vivo and in vitro. The in vivo studies implied that P(II)-P dephosphorylation is regulated by inhibitory metabolites involved in the glutamine synthetase-glutamate synthase pathway of ammonium assimilation. An in vitro assay for P(II)-P dephosphorylation was established that revealed a Mg2+-dependent P(II)-P phosphatase activity. P(II)-P phosphatase and P(II) kinase activities could be separated biochemically. A partially purified P(II)-P phosphatase preparation also catalysed the dephosphorylation of phosphoserine/phosphothreonine residues on other proteins in a Mg2+-dependent manner. However, only dephosphorylation of P(II)-P was regulated by synergistic inhibition by ATP and 2-oxoglutarate. As the same metabolites stimulate the P(II) kinase activity, it appears that the phosphorylation state of P(II) is determined by ATP and 2-oxoglutarate-dependent reciprocal reactivity of P(II) towards its phosphatase and kinase.
Cytohesin-1 is a regulatory interaction partner of the beta2 integrin alphaLbeta2 (LFA-1) and a guanine exchange factor (GEF) for ADP ribosylation factor (ARF)-GTPases. However, a functional role of cytohesin-1 in leukocyte adhesion to activated endothelium and subsequent transmigration in response to chemokines has not been defined. Overexpression of cytohesin-1 increased LFA-1-dependent arrest of leukocytic cells triggered by chemokines on cytokine-activated endothelium in flow while reducing the fraction of rolling cells. Conversely, a dominant-negative PH domain construct of cytohesin-1 but not a mutant deficient in GEF activity impaired arrest, indicating an involvement of the PH domain while GEF function is not required. Expression of these constructs and a beta2 mutant interrupting the interaction with cytohesin-1 indicated that shape change in flow and transendothelial chemotaxis involve both LFA-1 avidity regulation and GEF activity of cytohesin-1. As a potential downstream target, ARF6 but not ARF1 was identified to participate in chemotaxis. Our data suggest that cytohesin-1 and ARF6 are involved in the dynamic regulation of complex signaling pathways and cytoskeletal remodeling processes governing LFA-1 functions in leukocyte recruitment. Differential effects of cytohesin-1 and ARF6 mutants in our systems reveal that cytohesin-1 with its GEF activity controls both conversion of rolling into firm arrest and transmigration triggered by chemokines, whereas a cyclical activity of ARF6 plays a more important role in diapedesis.
Cell adhesion mediated by integrin receptors is controlled by intracellular signal transduction cascades. Cytohesin-1 is an integrin-binding protein and guanine nucleotide exchange factor that activates binding of the leukocyte integrin leukocyte function antigen-1 to its ligand, intercellular adhesion molecule 1. Cytohesin-1 bears a carboxyl-terminal pleckstrin homology domain that aids in reversible membrane recruitment and functional regulation of the protein. Although phosphoinositide-dependent membrane attachment of cytohesin-1 is mediated primarily by the pleckstrin homology domain, this function is further strengthened by a short carboxyl-terminal polybasic amino acid sequence. We show here that a serine/threonine motif within the short polybasic stretch of cytohesin-1 is phosphorylated by purified protein kinase C␦ in vitro. Furthermore, the respective residues are also found to be phosphorylated after phorbol ester stimulation in vivo. Biochemical and functional analyses show that phosphorylated cytohesin-1 is able to tightly associate with the actin cytoskeleton, and we further demonstrate that phosphorylation of the protein is required for maximal leukocyte function antigen-1-mediated adhesion of Jurkat cells to intercellular adhesion molecule 1. These data suggest that both phosphatidylinositol 3-kinase and protein kinase C-dependent intracellular pathways that stimulate  2 -integrin-mediated adhesion of T lymphocytes converge on cytohesin-1 as functional integrator.Integrins are a diverse family of heterodimeric transmembrane adhesion receptors that are present on most vertebrate cell types. They are known to play important roles in either development or somatic functions such as wound healing and the regulation of complex cell-cell or cell-matrix interactions within the immune system (1).The avidity of integrins for their ligands is dependent on the activation state of the cell they are expressed on (1-3). This type of regulation of cell adhesion has been termed inside-out signaling because intracellular signaling pathways triggered by protein tyrosine kinase or G-protein-coupled receptors have been shown to contribute to integrin-mediated adhesiveness. The mechanisms by which cytoplasmic signals are transmitted across the plasma membrane through integrin receptors are just emerging, but compelling evidence suggests that the intracellular domains of both ␣ and  chains participate in this process (4 -8).Previous studies have attempted to elucidate these signaling pathways. Recently, candidate cytoplasmic regulatory factors of integrin activation have been identified, either by biochemical methods or with the help of the two-hybrid system (7). One of them, cytohesin-1, is a 47-kDa intracellular protein that interacts specifically in several systems with the cytoplasmic domain of the leukocyte integrin ␣ L  2 (CD11a/18, LFA-1) (9). Cytohesin-1 bears a short amino-terminal domain that may aid in oligomerization, an extended central homology region that is similar to that of the yeast Sec7 protein, a...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.