For waste from electric and electronic equipment, the WEEE Directive stipulates the separate collection of electric and electronic waste. As to new electric and electronic devices, the Restriction of Hazardous Substances (RoHS) Directive bans the use of certain chemicals dangerous for man and environment. From the implementation of the WEEE directive, many unsolved problems have been documented: poor collection success, emission of dangerous substances during collection and recycling, irretrievable loss of valuable metals among others. As to RoHS, data from the literature show a satisfying success. The problems identified in the process can be reduced to some basic dilemmas at the borders between waste management, product policy and chemical safety. The objectives of the WEEE Directive and the specific targets for use and recycling of appliances are not consistent. There is no focus on scarce resources. Extended producer responsibility is not sufficient to guarantee sustainable waste management. Waste management reaches its limits due to problems of implementation but also due to physical laws. A holistic approach is necessary looking at all branch points and sinks in the stream of used products and waste from electric and electronic equipment. This may be done with respect to the general rules for sustainable management of material streams covering the three dimensions of sustainable policy. The relationships between the players in the field of electric and electronic devices have to be taken into account. Most of the problems identified in the implementation process will not be solved by the current amendment of the WEEE Directive.
Waste-to-energy (WtE) facilities have been established worldwide as a sustainable method for the disposal of residual waste. In the present study the following competing WtE systems were compared: (1) municipal solid waste incinerators (MSWIs) with energy recovery; (2) co-incineration of waste in old lignite or coal-fired power plants; (3) substitute [refuse-derived fuel (RDF)] incinerators with energy recovery; and (4) co-incineration of defined waste fractions in cement kilns. In general the municipal solid waste incinerators in Europe are designed for a broad range of municipal and commercial waste without a pre-treatment of the waste. All other WtE processes including the cement kilns require a pre-treatment and are more limited in terms of RDF composition; namely particle size, chlorine content, calorific value. As to Germany, the emission limit values for all facilities are similar. A sensitivity analysis of the economics of boilers using RDF and municipal solid waste leads to the conclusion that the feasibility of RDF incinerators might partially recover if the prices for primary energy increase again. On the other hand, pre-treatment of waste leads to higher costs for RDF. Incineration and recycling capacities are large enough in middle Europe to avoid landfilling of organic waste. The steep decline of gate fees observed in some national spot markets is a clear indicator of an already existing overcapacity. Considering the enormous amount of greenhouse gas emissions saved by WtE facilities in comparison with landfilling, free capacities of WtE installations should be used to incinerate waste from EU member states where waste disposal is still predominantly based on landfilling.
The first European waste from electric and electronic equipment directive obliged the Member States to collect 4 kg of used devices per inhabitant and year. The target of the amended directive focuses on the ratio between the amount of waste from electric and electronic equipment collected and the mass of electric and electronic devices put on the market in the three foregoing years. The minimum collection target is 45% starting in 2016, being increased to 65% in 2019 or alternatively 85% of waste from electric and electronic equipment generated. Being aware of the new target, the question arises how Member States with 'best practice' organise their collection systems and how they enforce the parties in this playing field. Therefore the waste from electric and electronic equipment schemes of Sweden, Denmark, Switzerland, Germany and the Flemish region of Belgium were investigated focusing on the categories IT and telecommunications equipment, consumer equipment like audio systems and discharge lamps containing hazardous substances, e.g. mercury. The systems for waste from electric and electronic equipment collection in these countries vary considerably. Recycling yards turned out to be the backbone of waste from electric and electronic equipment collection in most countries studied. For discharge lamps, take-back by retailers seems to be more important. Sampling points like special containers in shopping centres, lidded waste bins and complementary return of used devices in all retail shops for electric equipment may serve as supplements. High transparency of collection and recycling efforts can encourage ambition among the concerned parties. Though the results from the study cannot be transferred in a simplistic manner, they serve as an indication for best practice methods for waste from electric and electronic equipment collection.
Background: In the 7th Environment Action Programme, the European Commission targets two essential goals in the handling of substances and materials known by the buzzwords "non-toxic environment" and "circular economy". There are numerous interfaces in product, waste and chemicals legislation in these two areas. This leads to conflicting objectives, e.g. with regard to the classification of waste in analogy to chemicals as well as at the border between waste and secondary raw materials that are further processed into products. Results:We investigate how these conflicting objectives can be mitigated or resolved. In our view, it is necessary to provide operators in the waste management sector with considerably more information on the composition of used products than before; this should include not only hazardous substances but also materials that interfere with the recycling process as well as recyclable or valuable materials. Waste management legislation largely follows risk considerations-a 1:1 transfer of hazard classifications of chemicals and products to waste management would be counterproductive to achieving the Commission's objectives. In the case of contaminated secondary raw materials, their input into products can be justified in specific cases. However, this requires a risk assessment that includes in particular physicochemical factors, patterns of utilisation and controlled collection routes. Internationally recognised lists of secondary materials are an important condition for determining end-of-waste status and thus for increasing material recycling. Conclusions:A common guiding principle for chemicals policy and waste management is urgently needed. © The Author(s) 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creat iveco mmons .org/licen ses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.