Gibberellins (GAs) are involved in regulation of many aspects during plant development. To investigate the impact of altered GA levels on plant growth and metabolism, transgenic tobacco (Nicotiana tabacum) plants have been engineered to express either a GA20-oxidase (AtGA20-ox) or a GA2-oxidase (AtGA2-ox) gene from Arabidopsis under control of the cauliflower mosaic virus 35S promoter. Resulting plants were characterized by elongated or stunted shoot growth, respectively, indicating changes in the content of bioactive GAs. In accordance with the effect on plant growth, biomass production was increased or decreased in AtGA20-ox or AtGA2-ox plants, respectively, and was found to be positively correlated with the rate of photosynthesis as determined at the whole plant level. Differences in dry matter accumulation were most likely due to changes in lignin deposition as indicated by histochemical staining and quantitative measurements. Altered lignification of transgenic plants was paralleled by up-or down-regulation of the expression of lignin biosynthetic genes. Short-term GA 3 feeding of excised petioles induced lignin formation in the absence of a transcriptional activation of pathway-specific genes. Thus, shortterm GA treatment mediates lignin deposition most likely by polymerization of preformed monomers, whereas long-term effects on lignification involve elevated production of precursors by transcriptional stimulation of the biosynthetic pathway. Interestingly, analysis of stem cross sections revealed a differential effect of GA on the formation of xylem and pith cells. The number of lignified vessels was increased in AtGA20-ox plants pointing to a stimulation of xylem formation while the number of pith cells declined indicating a negative regulation.
Tocopherols (vitamin E) are lipophilic antioxidants presumed to play a key role in protecting chloroplast membranes and the photosynthetic apparatus from photooxidative damage. Additional nonantioxidant functions of tocopherols have been proposed after the recent finding that the Suc export defective1 maize (Zea mays) mutant (sxd1) carries a defect in tocopherol cyclase (TC) and thus is devoid of tocopherols. However, the corresponding vitamin E deficient1 Arabidopsis mutant (vte1) lacks a phenotype analogous to sxd1, suggesting differences in tocopherol function between C4 and C3 plants. Therefore, in this study, the potato (Solanum tuberosum) ortholog of SXD1 was isolated and functionally characterized. StSXD1 encoded a protein with high TC activity in vitro, and chloroplastic localization was demonstrated by transient expression of green fluorescent protein-tagged fusion constructs. RNAi-mediated silencing of StSXD1 in transgenic potato plants resulted in the disruption of TC activity and severe tocopherol deficiency similar to the orthologous sxd1 and vte1 mutants. The nearly complete absence of tocopherols caused a characteristic photoassimilate export-defective phenotype comparable to sxd1, which appeared to be a consequence of vascular-specific callose deposition observed in source leaves. CO 2 assimilation rates and photosynthetic gene expression were decreased in source leaves in close correlation with excess sugar accumulation, suggesting a carbohydrate-mediated feedback inhibition rather than a direct impact of tocopherol deficiency on photosynthetic capacity. This conclusion is further supported by an increased photosynthetic capacity of young leaves regardless of decreased tocopherol levels. Our data provide evidence that tocopherol deficiency leads to impaired photoassimilate export from source leaves in both monocot and dicot plant species and suggest significant differences among C3 plants in response to tocopherol reduction.
Constrained to develop within the seed, the plant embryo must adapt its shape and size to fit the space available. Here, we demonstrate how this adjustment shapes metabolism of photosynthetic embryo. Noninvasive NMR-based imaging of the developing oilseed rape (Brassica napus) seed illustrates that, following embryo bending, gradients in lipid concentration became established. These were correlated with the local photosynthetic electron transport rate and the accumulation of storage products. Experimentally induced changes in embryo morphology and/or light supply altered these gradients and were accompanied by alterations in both proteome and metabolome. Tissue-specific metabolic models predicted that the outer cotyledon and hypocotyl/radicle generate the bulk of plastidic reductant/ATP via photosynthesis, while the inner cotyledon, being enclosed by the outer cotyledon, is forced to grow essentially heterotrophically. Under field-relevant highlight conditions, major contribution of the ribulose-1,5-bisphosphate carboxylase/oxygenase-bypass to seed storage metabolism is predicted for the outer cotyledon and the hypocotyl/radicle only. Differences between in vitro-versus in planta-grown embryos suggest that metabolic heterogeneity of embryo is not observable by in vitro approaches. We conclude that in vivo metabolic fluxes are locally regulated and connected to seed architecture, driving the embryo toward an efficient use of available light and space.
SummaryA ferredoxin-NADP + oxidoreductase (FNR) cDNA from tobacco (Nicotiana tabacum cv. Samsun) was cloned and sequenced. Comparison of the deduced amino acid sequence revealed high identity to FNR proteins from Capsicum annuum, Pisum sativum, Spinacia oleracea and Vicia faba. Transgenic tobacco plants were generated that constitutively express the FNR cDNA in reverse orientation between the CaMV 35S promoter and the polyadenylation signal of the octopine synthase gene. Plants expressing the FNR antisense gene showed lower levels of FNR mRNA and protein accumulation, which was paralleled by a decrease in FNR activity. As a consequence, NADPH levels declined whereas NADP + levels increased, leading to an unaltered NADP(H) pool. Growth rates, chlorophyll content and net CO 2 uptake rates at high and low irradiances were strongly reduced in FNR antisense tobacco plants. These changes were accompanied by an over-reduced state of P 700 as estimated by absorption changes at 820 nm. FNR control coef®cients determined for the photosynthetic rate at saturating (C R = 0.94) and limiting (C R = 0.70) light conditions revealed a prominent role of this reductase in the regulation of photosynthesis.
Summary• This study establishes a topographical framework for functional investigations on the regulation of lipid biosynthesis and its interaction with embryo photosynthesis in developing soybean seed.• Structural observations, combined with molecular and functional parameters, revealed the gradual transformation of chloroplasts into storage organelles, starting from inner regions going outwards. This is evidenced by electron microscopy, confocal laser scanning microscopy, in situ hybridization and histochemical/biochemical data.• As a consequence of plastid differentiation, photosynthesis becomes distributed along a gradient within the developing embryo. Electron transport rate, effective quantum yield and O 2 production rate are maximal in the embryo periphery, as documented by imaging pulse-amplitude-modulated fluorescence and O 2 release via microsensors. The gradual loss of photosynthetic capacity was accompanied by a similarly gradual accumulation of starch and lipids. Noninvasive nuclear magnetic resonance spectroscopy of mature seeds revealed steep gradients in lipid deposition, with the highest concentrations in inner regions.• The inverse relationship between photosynthesis and lipid biosynthesis argues against a direct metabolic involvement of photosynthesis in lipid biosynthesis during the late storage stage, but points to a role for photosynthetic oxygen release. This hypothesis is verified in a companion paper.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.