The joining of components with as few weld layers as possible is an important aspect of weld seam design due to the resulting reduced manufacturing effort and reduced influence of thermal cycles on the base material as well as reduced distortion. For materials with good thermal conductivity, this is not easily possible. The energy density of the arc has been found to be the core parameter for determining the penetration. In the present work, it is shown how the use of a hyperbaric process environment (2 to 16 bar) allows an increase of the energy density of the arc and thus an increase of the penetration depth for selected aluminium and copper alloys. Furthermore, the effects of this novel approach on weld metal metallurgy are presented. It is shown that the penetration depth can be doubled by increasing the ambient pressure. Furthermore, a statistical model for the prediction of the penetration depth depending on the welding parameters will be presented.
The advantages of low‐heat joining, such as low distortion and no appreciable influence on the local material properties as a result of the low heat input, should be utilized for improving the reliability of processes for the manufacture of high‐strength structures. For this purpose, the mutual interactions among the parameters of the joining process, the brazing‐seam geometry, the brazing filler, the type of stress, and the fatigue strength, especially for arc‐brazed structures, are the subject of investigations for estimating the lifetime of locally hardened components by computational methods in the future. Fatigue life tests of brazed specimens show a significant increase of fatigue life compared to laser‐welded specimens. A further increase of fatigue life is expected by optimizing the geometry of the seam.
Resource-efficient manufacturing with a high degree of freedom in terms of component shape can be realised through additive manufacturing. The focus can lie not only on the manufacturing process in terms of geometrical correctness, stability, etc., but also on the targeted development of specific material properties. This study shows the development of hybrid material systems made of aluminium and the ferromagnetic particles iron, cobalt, and nickel. The aim is to use the ferromagnetic properties as sensor properties to enable the easy sensing of material properties such as the microstructure, fatigue, or occurring stresses. To easily adopt different compositions, hot isostatic pressing was selected for the characterisation of the material composites Al-Fe, Al-Ni, and Al-Co with regard to their magnetic properties. Subsequently, transfer to the additive manufacturing process of wire and arc additive manufacturing gas metal arc welding was carried out by mixing the powder separately into the weld pool. The study shows that it is possible to prevent a complete transformation of Ni and Co into intermetallic phases with Al by adjusting the influencing variables in the HIP process. Magnetic properties could be detected in the composites of Al-Co and Al-Fe. This work serves as a preliminary work to realise additive components made of hybrid material systems of Al-Fe, Al-Co, and Al-Ni with the GMA welding process.
Due to the increased demands for reducing CO2 emissions, improving fuel efficiency of modern vehicles has been continuously monitored. The body of a typical compact car design has a weight share of approx. 40%. In addition to increasing torsional stiffness and crash safety of the body, the aim is also to reduce the overall weight at the same time. In order to achieve these individual requirements, the use of three-sheet steel stack-ups with adhesive applications for car body construction is one of the current strategies used in automobile manufacturing. Adhesive applications lead to a change in process behavior of resistance spot welding. The effective weldability lobe is reduced and an adjusted preheat current is necessary to reconstitute the weldability of a component. Depending on squeeze time and electrode force the adhesive will be displaced. For an asymmetric sheet stack-up, the electrical resistance for every faying surface is highly differentiated. During welding, a specific characteristic of the electrical resistance is created for each individual material combination. These characteristics can be analyzed by using an online measurement device. In this manuscript, different sheet stack-ups are examined with regard to their weldability lobes and their process behavior. The individual three-sheet steel stack-ups used are made of low carbon steel (DX51), HSLA-steel (HX340) and UHS-steel (22MnB5). The corresponding characteristics of electrical resistance will be recorded by using an online measurement device. In addition, the process of adhesive displacement during the squeeze time and the initial welding current are discussed on the basis of the electrical energy generated in the component to be welded. The obtained results contribute to a direct verification of the welding process and an automatic detection of possible imperfect welds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.