Riverbed temperature profiles are frequently used to estimate vertical river–aquifer exchange fluxes. Often in this approach, strictly vertical flow is assumed. However, riverbeds are heterogeneous structures often characterised by complex flow fields, possibly violating this assumption. We characterise the meter-scale variability of river–aquifer interaction at two sections of the Aa River, Belgium, and compare vertical flux estimates obtained with a 1D analytical solution to the heat transport equation with fluxes simulated with a 3D groundwater model (MODFLOW) using spatially distributed fields of riverbed hydraulic conductivity. Based on 115 point-in-time riverbed temperature profiles, vertical flux estimates that are obtained with the 1D solution are found to be higher near the banks than in the center of the river. The total exchange flux estimated with the 3D groundwater model is around twice as high as the estimate based on the 1D solution, while vertical flux estimates from both methods are within a 10% margin. This is due to an important contribution of non-vertical flows, especially through the riverbanks. Quasi-vertical flow is only found near the center of the river. This quantitative underestimation should be considered when interpreting exchange fluxes based on 1D solutions. More research is necessary to assess conditions for which using a 1D analytical approach is justified to more accurately characterise river–aquifer exchange fluxes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.