The orchestration of software-defined networks (SDN) and the internet of things (IoT) has revolutionized the computing fields. These include the broad spectrum of connectivity to sensors and electronic appliances beyond standard computing devices. However, these networks are still vulnerable to botnet attacks such as distributed denial of service, network probing, backdoors, information stealing, and phishing attacks. These attacks can disrupt and sometimes cause irreversible damage to several sectors of the economy. As a result, several machine learning-based solutions have been proposed to improve the real-time detection of botnet attacks in SDN-enabled IoT networks. The aim of this review is to investigate research studies that applied machine learning techniques for deterring botnet attacks in SDN-enabled IoT networks. Initially the first major botnet attacks in SDN-IoT networks have been thoroughly discussed. Secondly a commonly used machine learning techniques for detecting and mitigating botnet attacks in SDN-IoT networks are discussed. Finally, the performance of these machine learning techniques in detecting and mitigating botnet attacks is presented in terms of commonly used machine learning models’ performance metrics. Both classical machine learning (ML) and deep learning (DL) techniques have comparable performance in botnet attack detection. However, the classical ML techniques require extensive feature engineering to achieve optimal features for efficient botnet attack detection. Besides, they fall short of detecting unforeseen botnet attacks. Furthermore, timely detection, real-time monitoring, and adaptability to new types of attacks are still challenging tasks in classical ML techniques. These are mainly because classical machine learning techniques use signatures of the already known malware both in training and after deployment.
Currently, organizations are faced with a variety of cyber-threats and are possibly challenged by a wide range of cyber-attacks of varying frequency, complexity, and impact. However, they can do something to prevent, or at least mitigate, these cyber-attacks by first understanding and addressing their common problems regarding cybersecurity culture, developing a cyber-risk management plan, and devising a more proactive and collaborative approach that is suitable according to their organization context. To this end, firstly various enterprise, Information Technology (IT), and cybersecurity risk management frameworks are thoroughly reviewed along with their advantages and limitations. Then, we propose a proactive cybersecurity risk management framework that is simple and dynamic, and that adapts according to the current threat and technology landscapes and organizational context. Finally, performance metrics to evaluate the framework are proposed.
Internet of Things (IoT) can simply be defined as an extension of the current Internet system. It extends the human to human interconnection and intercommunication scenario of the Internet by including things, to bring anytime, anywhere, and anything communication. A discipline in networking evolving in parallel with IoT is Software Defined Networking (SDN). It is an important technology that is aimed to solve the different problems existing in the traditional network systems. It provides a new convenient home to address the different challenges existing in different network-based systems including IoT. One important security challenge prevailing in such SDN-based IoT (SDIoT) systems is guarantying service availability. The ever-increasing denial of service (DoS) attacks are responsible for such service denials. A centralized signature-based intrusion detection system (IDS) is proposed and developed in this work. Random Forest (RF) classifier is used for training the model. A very popular and recent benchmark dataset, CICIDS2017, has been used for training and validating the machine learning (ML) models. An accuracy result of 99.968% has been achieved by using only 12 features on Wednesday’s release of the dataset. This result is higher than the achieved accuracy results of related works considering the original CICIDS2017 dataset. A maximum cross-validated accuracy result of 99.713% has been achieved on the same release of the dataset. These developed models meet the basic requirement of a supervised IDS system developed for smart environments and can effectively be used in different IoT service scenarios.
Mobile Ad Hoc Networks (MANETs) are a collection of mobile nodes that are dynamically and randomly move and self organize within a given topology. In MANET, Transmission Control Protocol (TCP) is unable to distinguish packet losses due to congestion or route/link failures due to mobility of nodes. Hence the way how routing protocols respond to route failures and route recovery mechanism has an effect on the performance of TCP variants. In this paper, the effect of routing protocols; Ad hoc On Demand Distance Vector (AODV), Destination Sequenced Distance Vector (DSDV), Dynamic Source Routing (DSR), and Temporally Ordered Routing Algorithm (TORA), on the performance of TCP variants; TCP Newreno, TCP Reno, TCP with Selective Acknowledgment (Sack), and TCP Tahoe, under different mobility pattern and node density were studied. Simulation results showed that, for all variants of TCP, AODV achieved the highest throughput. From TCP variants, TCP Newreno performed better than the other variants over the stated routing protocols. It is also confirmed that the performance of TCP variants are highly dependent on the underlying routing protocols in MANET.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.