This paper presents an effective means of analyzing the safety of a tunnel under dynamic loading in areas with seismic records. A particular case of the railway tunnel in the earthquake-prone regions of the escarpment seismic zone of Ethiopia was the specific focus area of the research. Probabilistic seismic hazard analysis (PSHA) and deaggregation have been conducted to determine the design earthquake required as an input for the dynamic analysis. The PSHA performed by considering the operating design earthquake with conservative assumptions of the local geological features resulted in a peak ground acceleration of 0.36. Two pairs of design earthquake have been obtained from the deaggregation process, which were used to filter acceleration time histories for the selected design earthquake from the ground motion database of Pacific Earthquake Engineering Research Center. Finally, full dynamic analyses of the tunnel have been performed by applying the scaled acceleration time histories corresponding to the structure in the specific site. It was demonstrated how to prove the stability of the tunnel located in difficult ground conditions by performing plane strain analyses with the possible minimum computational efforts.
One of the major problems in ballasted railroads is ballast flying, which is the projection of ballast particles from the at-rest position as the train passes over the track of a railway structure, mainly due to high speed. In this research, the possibility of railway ballast flying for the double track Addis-Adama section of the new Addis-Djibouti railway line is assessed by determining the major causes of ballast flying and applying Discrete Element Modeling (DEM) with the aid of Particle Flow Code (PFC3D) software. The analysis comprised of an impact load and ballast material behavior which were used to determine the vibrational speed of individual ballast particles. The governing result from the series of discrete element analyses performed by considering fouled ballast gradation with grain-size diameter of 22.4 mm gives rise to a ballast maximum vibrational speed of 0.014 m/s. Since the ballast vibrational speed for Addis Ababa-Adama line is less than 0.02 m/s that is recommended by the literature, no ballast flight is expected under the present traffic and ballast conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.