SummaryCellular metabolism is regulated by the mTOR kinase, a key component of the molecular nutrient sensor pathway that plays a central role in cellular survival and aging. The mTOR pathway promotes protein and lipid synthesis and inhibits autophagy, a process known for its contribution to longevity in several model organisms. The nutrient‐sensing pathway is regulated at the lysosomal membrane by a number of proteins for which deficiency triggers widespread aging phenotypes in tested animal models. In response to environmental cues, this recently discovered lysosomal nutrient‐sensing complex regulates autophagy transcriptionally through conserved factors, such as the transcription factors TFEB and FOXO, associated with lifespan extension. This key metabolic pathway strongly depends on nucleocytoplasmic compartmentalization, a cellular phenomenon gradually lost during aging. In this review, we discuss the current progress in understanding the contribution of mTOR‐regulating factors to autophagy and longevity. Furthermore, we review research on the regulation of metabolism conducted in multiple aging models, including Caenorhabditis elegans, Drosophila and mouse, and human iPSCs. We suggest that conserved molecular pathways have the strongest potential for the development of new avenues for treatment of age‐related diseases.
The molecular mechanisms leading to and responsible for age-related, sporadic Alzheimer's disease (AD) remain largely unknown. It is well documented that aging patients with elevated levels of the amino acid metabolite homocysteine (Hcy) are at high risk of developing AD. We investigated the impact of Hcy on molecular clearance pathways in mammalian cells, including in vitro cultured induced pluripotent stem cell-derived forebrain neurons and in vivo neurons in mouse brains. Exposure to Hcy resulted in up-regulation of the mechanistic target of rapamycin complex 1 (mTORC1) activity, one of the major kinases in cells that is tightly linked to anabolic and catabolic pathways. Hcy is sensed by a constitutive protein complex composed of leucyl-tRNA-synthetase and folliculin, which regulates mTOR tethering to lysosomal membranes. In hyperhomocysteinemic human cells and cystathionine β-synthase-deficient mouse brains, we find an acute and chronic inhibition of the molecular clearance of protein products resulting in a buildup of abnormal proteins, including β-amyloid and phospho-Tau. Formation of these protein aggregates leads to AD-like neurodegeneration. This pathology can be prevented by inhibition of mTORC1 or by induction of autophagy. We conclude that an increase of intracellular Hcy levels predisposes neurons to develop abnormal protein aggregates, which are hallmarks of AD and its associated onset and pathophysiology with age.-Khayati, K., Antikainen, H., Bonder, E. M., Weber, G. F., Kruger, W. D., Jakubowski, H., Dobrowolski, R. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice.
There is intense interest and effort toward regenerating the brain after severe injury. Stem cell transplantation after insult to the central nervous system has been regarded as the most promising approach for repair; however, engrafting cells alone might not be sufficient for effective regeneration. In this study, we have compared neural progenitors (NPs) from the fetal ventricular zone (VZ), the postnatal subventricular zone, and an immortalized radial glia (RG) cell line engineered to conditionally secrete the trophic factor insulin-like growth factor 1 (IGF-1). Upon differentiation in vitro , the VZ cells were able to generate a greater number of neurons than subventricular zone cells. Furthermore, differentiated VZ cells generated pyramidal neurons . In vitro , doxycycline-driven secretion of IGF-1 strongly promoted neuronal differentiation of cells with hippocampal, interneuron and cortical specificity. Accordingly, VZ and engineered RG-IGF-1-hemagglutinin (HA) cells were selected for subsequent in vivo experiments. To increase cell survival, we delivered the NPs attached to a multifunctional chitosan-based scaffold. The microspheres containing adherent NPs were injected subacutely into the lesion cavity of adult rat brains that had sustained controlled cortical impact injury. At 2 weeks posttransplantation, the exogenously introduced cells showed a reduction in stem cell or progenitor markers and acquired mature neuronal and glial markers. In beam walking tests assessing sensorimotor recovery, transplanted RG cells secreting IGF-1 contributed significantly to functional improvement while native VZ or RG cells did not promote significant recovery. Altogether, these results support the therapeutic potential of chitosan-based multifunctional microsphere scaffolds seeded with genetically modified NPs expressing IGF-1 to promote repair and functional recovery after traumatic brain injuries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.