In this paper, we present the evaluation of the aerodynamic robustness to rim seal purge flow of an optimized 1.5-stage axial turbine configuration with a bowed stator profile and endwall contouring. Performance maps obtained by experiments and numerical simulations show that the efficiency benefit gained by this optimized configuration is partially reduced by the injection of purge flow through the cavity downstream of the first stator. Measurements with five-hole probes and hot-wire probes, as well as unsteady RANS simulations, give insights into the physical effects of the purge flow inside the rotor passage. There, when no purge flow is injected, the optimized configuration diminishes the formation of loss-inducing secondary flow structures near the hub and the casing. When purge flow is injected, however, strong secondary flow structures are induced near the hub. These vortices generate additional losses and thereby partially negate the efficiency benefits gained by the optimization. We found that this influence of the purge flow is limited to the lower half of the channel. The data also shows that the optimized configuration reduces the vorticity near the casing regardless of the purge flow injection, which in turn leads to an efficiency increase in this area. Together, these effects lead to a reduction of the previously gained efficiency benefit by the optimized configuration when it is subjected to purge flow injection. However, compared to a baseline configuration with cylindrical endwalls also subject to purge flow injection, the efficiency is still increased by 0.38%.
This paper presents an investigation of the aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage turbine with non-axisymmetric end walls and a bowed stator using experimental flow measurements and unsteady RANS simulations. The study focuses on the secondary vortex structures formed in the rotor passages of the 1.5- stage axial turbine rig. Through performance map measurements, it was found that the efficiency gain of the non-axisymmetric configuration is partially eliminated by the injection of purge flow. Numerical investigations, which are supported by detailed flow measurements with five-hole probes and hot-wire probes, revealed that the injection of purge air flow intensifies vortex structures near the hub, thereby generating additional losses. These resulting vortex structures are highly similar both in the axisymmetric baseline and the non-axisymmetric configuration and are the result of jet-like vortices emerging from the cavity. From these findings, it can be concluded that the non-axisymmetric contour and the bowed stator no longer provides any efficiency benefit near the hub. Only the near the casing, where the flow is not affected by the purge flow, the optimized configuration continues to improve the efficiency of the rig by homogenizing the stator outflow and thus reducing the secondary flow structures in the rotor passages.
In this paper, we present the evaluation of the aerodynamic robustness to rim seal purge flow of an optimized 1.5-stage axial turbine configuration with a bowed stator profile and endwall contouring. Performance maps obtained by experiments and numerical simulations show that the efficiency benefit gained by this optimized configuration is partially reduced, but not eliminated, by the injection of purge flow through the cavity downstream of the first stator. Measurements with five-hole probes and hot-wire probes, as well as unsteady RANS simulations, give detailed insights into the physical effects of the purge flow inside the rotor passage. There, when no purge flow is injected, the optimized configuration diminishes the formation of loss-inducing secondary flow structures near the hub and the casing. When purge flow is injected, however, new strong secondary flow structures are induced near the hub. These vortices generate additional losses and thereby partially negate the efficiency benefits gained by the optimization. From the data, we found that this influence of the purge flow is limited to the lower half of the channel height. The data also shows that the optimized configuration is able to reduce the vorticity near the casing regardless of the purge flow injection, which in turn leads to an efficiency increase in this area. Together, these effects lead to a reduction of the previously gained efficiency benefit by the optimized configuration when it is subjected to purge flow injection. However, compared to a baseline configuration with cylindrical endwalls also subject to purge flow injection, the overall efficiency is still increased by 0.38%.
This paper presents an investigation of the aerodynamic influence of rim seal purge flow injection on the main flow in a 1.5-stage turbine with non-axisymmetric end walls and a bowed stator using experimental flow measurements and unsteady RANS simulations. The study focuses on the secondary vortex structures formed in the rotor passages of the 1.5-stage axial turbine rig. Through performance map measurements, it was found that the efficiency gain of the non-axisymmetric configuration is partially eliminated by the injection of purge flow. Numerical investigations, which are supported by detailed flow measurements with five-hole probes and hot-wire probes, revealed that the injection of purge air flow intensifies vortex structures near the hub, thereby generating additional losses. These resulting vortex structures are highly similar both in the axisymmetric baseline and the non-axisymmetric configuration and are the result of jet-like vortices emerging from the cavity. From these findings, it can be concluded that the non-axisymmetric contour and the bowed stator no longer provides any efficiency benefit near the hub. Only the near the casing, where the flow is not affected by the purge flow, the optimized configuration continues to improve the efficiency of the rig by homogenizing the stator outflow and thus reducing the secondary flow structures in the rotor passages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.