Classical adaptive optics (AO) is now a widespread technique for high-resolution imaging with astronomical ground-based telescopes. It generally uses simple and efficient control algorithms. Multiconjugate adaptive optics (MCAO) is a more recent and very promising technique that should extend the corrected field of view. This technique has not yet been experimentally validated, but simulations already show its high potential. The importance for MCAO of an optimal reconstruction using turbulence spatial statistics has already been demonstrated through open-loop simulations. We propose an optimal closed-loop control law that accounts for both spatial and temporal statistics. The prior information on the turbulence, as well as on the wave-front sensing noise, is expressed in a state-space model. The optimal phase estimation is then given by a Kalman filter. The equations describing the system are given and the underlying assumptions explained. The control law is then derived. The gain brought by this approach is demonstrated through MCAO numerical simulations representative of astronomical observation on a 8-m-class telescope in the near infrared. We also discuss the application of this control approach to classical AO. Even in classical AO, the technique could be relevant especially for future extreme AO systems.
The fundamental issue of residual phase variance minimization in adaptive optics (AO) loops is addressed here from a control engineering perspective. This problem, when suitably modeled using a state-space approach, can be broken down into an optimal deterministic control problem and an optimal estimation problem, the solution of which are a linear quadratic (LQ) control and a Kalman filter. This approach provides a convenient framework for analyzing existing AO controllers, which are shown to contain an implicit phase turbulent model. In particular, standard integrator-based AO controllers assume a constant turbulent phase, which renders them prone to the notorious wind-up effect.
Adaptive optics provides real time correction of wavefront disturbances on ground based telescopes. Optimizing control and performance is a key issue for ever more demanding instruments on ever larger telescopes affected not only by atmospheric turbulence, but also by vibrations, windshake and tracking errors. Linear Quadratic Gaussian control achieves optimal correction when provided with a temporal model of the disturbance. We present in this paper the first on-sky results of a Kalman filter based LQG control with vibration mitigation on the CANARY instrument at the Nasmyth platform of the 4.2-m William Herschel Telescope. The results demonstrate a clear improvement of performance for full LQG compared with standard integrator control, and assess the additional improvement brought by vibration filtering with a tip-tilt model identified from on-sky data, thus validating the strategy retained on the instrument SPHERE at the VLT.
We present a first experimental validation of vibration filtering with a Linear Quadratic Gaussian (LQG) control law in Adaptive Optics (AO). A quasi-pure mechanical vibration is generated on a classic AO bench and filtered by the control law, leading to an improvement of the Strehl Ratio and image stability. Vibration filtering may be applied to any AO system, but these results are of particular interest for eXtrem AO, and for instance for the SPHERE AO design, where high performance is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.