The development and validation of methods for determining concentrations of the antipsychotic drug asenapine (ASE) and three of its metabolites [N-desmethylasenapine (DMA), asenapine-N(+) -glucuronide (ASG) and 11-O-sulfate-asenapine (OSA)] in human plasma using LC-MS/MS with automated solid-phase extraction is described. The three assessment methods in human plasma were found to be acceptable for quantification in the ranges 0.0250-20.0 ng/mL (ASE), 0.0500-20.0 ng/mL (DMA and OSA) and 0.250-50.0 ng/mL (ASG).
The vast majority of today's modern bioanalytical methods for pharmacokinetic, pharmacodynamic and immunogenicity purposes are based on LC-MS/MS and immunoanalytical approaches. Indeed, these methodologies are suitable for a wide range of molecules from small to large. For a smaller but not insignificant group of compounds, LC-MS/MS is not suitable - or in some cases much less suitable - as a reliable bioanalytical methodology, and inductively coupled plasma (ICP)-MS is a more appropriate methodology. ICP-MS is one of these less widely used techniques in drug development. This methodology is predominantly used for elemental bioanalysis for pharmacokinetics, for imaging purposes, for mass-balance, food-effect and biomarker studies. In addition, in the last couple of years an increasing number of applications has been published, where ICP-MS and its various hyphenations (LC-ICP-MS, CE-ICP-MS) have been used for speciation/metabolism and proteomics studies. Here, the analytical potential, the quantitative bioanalytical aspects, the various modes of operation and the challenges of the application of ICP-MS in life sciences applications are given. This includes an overview of recent applications in this area in scientific literature, the various hyphenation possibilities and their application areas and the analysis of the various sample matrices applicable to these fields. It also provides a brief outlook of where the potential of this technique lies in the future of regulated bioanalysis and drug development.
To support the evaluation of the pharmacokinetic parameters of asenapine (ASE) in urine, we developed and validated online solid-phase extraction high-performance liquid chromatography methods with tandem mass spectrometry detection (SPE-LC-MS/MS) for the quantification of ASE and two of its major metabolites, N-desmethylasenapine (DMA) and asenapine-N⁺-glucuronide (ASG). The linearity in human urine was found acceptable for quantification in a concentration range of 0.500-100 ng/mL for ASE and DMA and 10.0-3000 ng/mL for ASG, respectively.
Therapeutics promoting myelin synthesis may enhance recovery in demyelinating diseases, such as multiple sclerosis. However, no suitable method exists to quantify myelination. The turnover of galactosylceramide (myelin component) is indicative of myelination in mice, but its turnover has not been determined in humans. Here, six healthy subjects consumed 120 mL 70% D2O daily for 70 days to label galactosylceramide. We then used mass spectrometry and compartmental modeling to quantify the turnover rate of galactosylceramide in cerebrospinal fluid. Maximum deuterium enrichment of body water ranged from 1.5–3.9%, whereas that of galactosylceramide was much lower: 0.05–0.14%. This suggests a slow turnover rate, which was confirmed by the model‐estimated galactosylceramide turnover rate of 0.00168 day−1, which corresponds to a half‐life of 413 days. Additional studies in patients with multiple sclerosis are needed to investigate whether galactosylceramide turnover could be used as an outcome measure in clinical trials with remyelination therapies.
The development and validation of a method for the determination of concentrations of thiocyanate in human plasma are described here. A modified colorimetric method of Bowler was used with the following alteration in Monica Manual, Part III. In order to obtain the same sensitivity in low amounts of clinical samples, quartz SUPRASIL® micro cuvettes have been used. The quantitation range was between 25-500 µM. Accuracy and precision of the quality control samples, linearity of the calibration curve, dilution, spike recovery and stability under various conditions were evaluated in the validation of the method and all demonstrated acceptable results. All validation results met good laboratory practice acceptance and FDA requirements to be acceptable for application in clinical trials. The validated method has been used for a Phase I clinical study in cancer patients orally administered with either 60 mg or 80 mg of GDC-0425 containing a cyanide (CN -) group. The thiocyanate levels from patients before and after drug administration showed no clinically significant differences.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.