The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
Construction of splitting-step methods and properties of related nonnegativity and boundary preserving semianalytic numerical algorithms for solving stochastic differential equations (SDEs) of Itô type are discussed. As the crucial assumption, we oppose conditions such that one can decompose the original system of SDEs into subsystems for which one knows either the exact solution or its conditional transition probability. We present convergence proofs for a newly designed splittingstep algorithm and simulation studies for numerous well-known numerical examples ranging from stochastic dynamics occurring in asset pricing in mathematical finance (Cox-Ingersoll-Ross (CIR) and constant elasticity of variance (CEV) models) to measure-valued diffusion and super-Brownian motion (stochastic PDEs (SPDEs)) as met in biology and physics.
Convergence, consistency, stability and pathwise positivity of balanced Milstein methods for numerical integration of ordinary stochastic differential equations (SDEs) are discussed. This family of numerical methods represents a class of highly efficient linear-implicit schemes which generate mean square converging numerical approximations with qualitative improvements and global rate 1.0 of mean square convergence, compared to commonly known numerical methods for SDEs with Lipschitzian coefficients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.